Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Characterization of a mutant glucose isomerase from Thermoanaerobacterium saccharolyticum

Characterization of a mutant glucose isomerase from Thermoanaerobacterium saccharolyticum A series of site-directed mutant glucose isomerase at tryptophan 139 from Thermoanaerobacterium saccharolyticum strain B6A were purified to gel electrophoretic homogeneity, and the biochemical properties were determined. W139F mutation is the most efficient mutant derivative with a tenfold increase in its catalytic efficiency toward glucose compared with the native GI. With a maximal activity at 80 °C of 59.58 U/mg on glucose, this mutant derivative is the most active type ever reported. The enzyme activity was maximal at 90 °C and like other glucose isomerase, this mutant enzyme required Co2+ or Mg2+ for enzyme activity and thermal stability (stable for 20 h at 80 °C in the absence of substrate). Its optimum pH was around 7.0, and it had 86 % of its maximum activity at pH 6.0 incubated for 12 h at 60 °C. This enzyme was determined as thermostable and weak-acid stable. These findings indicated that the mutant GI W139F from T. saccharolyticum strain B6A is appropriate for use as a potential candidate for high-fructose corn syrup producing enzyme. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Industrial Microbiology Biotechnology Springer Journals

Characterization of a mutant glucose isomerase from Thermoanaerobacterium saccharolyticum

Loading next page...
 
/lp/springer-journals/characterization-of-a-mutant-glucose-isomerase-from-LQ2025Ge0J

References (33)

Publisher
Springer Journals
Copyright
Copyright © 2014 by Society for Industrial Microbiology and Biotechnology
Subject
Life Sciences; Microbiology; Biochemistry, general; Inorganic Chemistry; Genetic Engineering; Biotechnology; Bioinformatics
ISSN
1367-5435
eISSN
1476-5535
DOI
10.1007/s10295-014-1478-4
pmid
25139657
Publisher site
See Article on Publisher Site

Abstract

A series of site-directed mutant glucose isomerase at tryptophan 139 from Thermoanaerobacterium saccharolyticum strain B6A were purified to gel electrophoretic homogeneity, and the biochemical properties were determined. W139F mutation is the most efficient mutant derivative with a tenfold increase in its catalytic efficiency toward glucose compared with the native GI. With a maximal activity at 80 °C of 59.58 U/mg on glucose, this mutant derivative is the most active type ever reported. The enzyme activity was maximal at 90 °C and like other glucose isomerase, this mutant enzyme required Co2+ or Mg2+ for enzyme activity and thermal stability (stable for 20 h at 80 °C in the absence of substrate). Its optimum pH was around 7.0, and it had 86 % of its maximum activity at pH 6.0 incubated for 12 h at 60 °C. This enzyme was determined as thermostable and weak-acid stable. These findings indicated that the mutant GI W139F from T. saccharolyticum strain B6A is appropriate for use as a potential candidate for high-fructose corn syrup producing enzyme.

Journal

Journal of Industrial Microbiology BiotechnologySpringer Journals

Published: Aug 20, 2014

There are no references for this article.