“Woah! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Get 2 Weeks Free

Unsteady two-dimensional and axisymmetric MHD boundary-layer flows

Unsteady two-dimensional and axisymmetric MHD boundary-layer flows Nonsimilar solution of the unsteady laminar incompressible magneto-hydrodynamic boundary layer flow and heat transfer for an electrically conducting fluid over two-dimensional and axisymmetric bodies in the presence of an applied magnetic field has been obtained. The effects of surface mass transfer, Joule heating and viscous dissipation are included in the analysis. Numerical computation have been carried out for the flow over a circular cylinder and a sphere using an implicit finite difference scheme in combination with a quasi-linearization technique. It is observed that magnetic field and suction cause the location of vanishing skin friction to move downstream while, the effect of injection is just the opposite. The effect of magnetic field on the skin friction is more pronounced as compared to its effect on the heat transfer. On the other hand, the heat transfer is strongly affected by the viscous dissipation and the effect is more for larte times. However, heat transfer responds comparatively less to the fluctuations of the free stream than the skin friction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Acta Mechanica Springer Journals

Loading next page...
 
/lp/springer-journal/unsteady-two-dimensional-and-axisymmetric-mhd-boundary-layer-flows-zf7c90DmSp

You're reading a free preview. Subscribe to read the entire article.

And millions more from thousands of peer-reviewed journals, for just $40/month

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.

Stop missing out on the latest updates in your field

  • We’ll send you automatic email updates on the keywords and journals you tell us are most important to you.
  • There is a lot of content out there, so we help you sift through it and stay organized.