Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

The ecology of cirratulid mudballs on the Oman margin, northwest Arabian Sea

The ecology of cirratulid mudballs on the Oman margin, northwest Arabian Sea Mudball-building cirratulid polychaetes have been described previously only from the southern California margin. During a study of oxygen minimum-zone benthos in fall 1994, we observed dense aggregations of agglutinated mudballs at 840 to 875 m on the Oman margin in the northwest Arabian Sea. These were inhabited, and probably constructed, by a cirratulid polychaete species in the genus Monticellina. The mudballs were cigar-shaped, 4.5 to 25 mm long, and positioned vertically so as to protrude several millimeters above the sediment–water interface. Total mudball densities were ∼16 000 m−2. Occupied mudballs occurred at densities of 2 112 m−2; 89% were in the uppermost 2 cm of sediment, and no occupied mudballs were found below 10 cm. Organisms other than the cirratulid were present on 1.7% of the mudballs examined, and included epizoic polychaetes, agglutinated and calcareous Foraminifera. Various polychaetes, a nemertean and nematodes were found inside tests. Mudball abundance exhibited positive associations with densities of several paraonid polychaete species, and with densities of burrowing and subsurface-deposit-feeding polychaetes. Negative associations were observed between mudballs and three tube-building taxa (two polychaetes and an amphipod). Mudball-inhabiting cirratulids are abundant in at least two low-oxygen, margin settings. We expect further sampling of bathyal environments to yield additional systems in which cirratulid mudballs are common. Such observations are valuable because mudballs appear to represent a significant source of heterogeneity that can influence macrofaunal community structure in deep-sea sediments. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Marine Biology Springer Journals

The ecology of cirratulid mudballs on the Oman margin, northwest Arabian Sea

Marine Biology , Volume 128 (4) – Jun 26, 1997

Loading next page...
 
/lp/springer-journal/the-ecology-of-cirratulid-mudballs-on-the-oman-margin-northwest-FG5rmb8rdt

References (13)

Publisher
Springer Journals
Copyright
Copyright © 1997 by Springer-Verlag Berlin Heidelberg
Subject
Environment; Marine & Freshwater Sciences; Freshwater & Marine Ecology; Oceanography; Microbiology; Zoology
ISSN
0025-3162
eISSN
1432-1793
DOI
10.1007/s002270050134
Publisher site
See Article on Publisher Site

Abstract

Mudball-building cirratulid polychaetes have been described previously only from the southern California margin. During a study of oxygen minimum-zone benthos in fall 1994, we observed dense aggregations of agglutinated mudballs at 840 to 875 m on the Oman margin in the northwest Arabian Sea. These were inhabited, and probably constructed, by a cirratulid polychaete species in the genus Monticellina. The mudballs were cigar-shaped, 4.5 to 25 mm long, and positioned vertically so as to protrude several millimeters above the sediment–water interface. Total mudball densities were ∼16 000 m−2. Occupied mudballs occurred at densities of 2 112 m−2; 89% were in the uppermost 2 cm of sediment, and no occupied mudballs were found below 10 cm. Organisms other than the cirratulid were present on 1.7% of the mudballs examined, and included epizoic polychaetes, agglutinated and calcareous Foraminifera. Various polychaetes, a nemertean and nematodes were found inside tests. Mudball abundance exhibited positive associations with densities of several paraonid polychaete species, and with densities of burrowing and subsurface-deposit-feeding polychaetes. Negative associations were observed between mudballs and three tube-building taxa (two polychaetes and an amphipod). Mudball-inhabiting cirratulids are abundant in at least two low-oxygen, margin settings. We expect further sampling of bathyal environments to yield additional systems in which cirratulid mudballs are common. Such observations are valuable because mudballs appear to represent a significant source of heterogeneity that can influence macrofaunal community structure in deep-sea sediments.

Journal

Marine BiologySpringer Journals

Published: Jun 26, 1997

There are no references for this article.