“Woah! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Get 2 Weeks Free

First-instar monarch larval growth and survival on milkweeds in southern California: effects of latex, leaf hairs and cardenolides

First-instar monarch larval growth and survival on milkweeds in southern California: effects of latex, leaf hairs and cardenolides Growth rate and survival of first-instar larvae of Danaus plexippus , a milkweed specialist, depended on milkweed species, and was related to the amount of latex produced from wounds, leaf cardenolide concentrations and the presence of leaf hairs. Larval growth was more rapid and survival was higher on leaves of Asclepias californica with experimentally reduced latex, and this species has characteristically high latex, low- to mid-range cardenolide concentrations, and very hirsute leaves. Similarly, growth was higher on reduced latex leaves of both A. eriocarpa (a high latex/high cardenolide, hirsute species) and A. erosa (glabrous fleshy leaves, high latex/high cardenolides). There were no differences in either survival or growth rate between larvae on reduced latex or control leaves of the low latex/low cardenolide A. fascicularis with soft glabrous leaves and both survival and growth rate were higher on this species than the other species tested. Larval growth rates on leaves with reduced latex were similar among ten milkweed species tested to date but differed from growth rates on intact leaves suggesting that latex and possibly included cardenolides are both important in first-instar monarch larval growth, development and survival. We show for a range of ecologically important milkweeds that experiments on cut plant material (no latex outflow) lead to higher growth rates compared to intact plants. Such laboratory assays based on detached leaves will be misleading if the objective is to determine the impact of treatments such as Bt -maize pollen on monarchs on field plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Chemoecology Springer Journals

Loading next page...

You're reading a free preview. Subscribe to read the entire article.

And millions more from thousands of peer-reviewed journals, for just $40/month

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.

Stop missing out on the latest updates in your field

  • We’ll send you automatic email updates on the keywords and journals you tell us are most important to you.
  • There is a lot of content out there, so we help you sift through it and stay organized.