“Woah! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Get 2 Weeks Free

An overview on fermentation, downstream processing and properties of microbial alkaline proteases

An overview on fermentation, downstream processing and properties of microbial alkaline proteases Microbial alkaline proteases dominate the worldwide enzyme market, accounting for a two-thirds share of the detergent industry. Although protease production is an inherent property of all organisms, only those microbes that produce a substantial amount of extracellular protease have been exploited commercially. Of these, strains of Bacillus sp. dominate the industrial sector. To develop an efficient enzyme-based process for the industry, prior knowledge of various fermentation parameters, purification strategies and properties of the biocatalyst is of utmost importance. Besides these, the method of measurement of proteolytic potential, the selection of the substrate and the assay protocol depends upon the ultimate industrial application. A large array of assay protocols are available in the literature; however, with the predominance of molecular approaches for the generation of better biocatalysts, the search for newer substrates and assay protocols that can be conducted at micro/nano-scale are becoming important. Fermentation of proteases is regulated by varying the C/N ratio and can be scaled-up using fed-batch, continuous or chemostat approaches by prolonging the stationary phase of the culture. The conventional purification strategy employed, involving e.g., concentration, chromatographic steps, or aqueous two-phase systems, depends on the properties of the protease in question. Alkaline proteases useful for detergent applications are mostly active in the pH range 8–12 and at temperatures between 50 and 70°C, with a few exceptions of extreme pH optima up to pH 13 and activity at temperatures up to 80–90°C. Alkaline proteases mostly have their isoelectric points near to their pH optimum in the range of 8–11. Several industrially important proteases have been subjected to crystallization to extensively study their molecular homology and three-dimensional structures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Microbiology and Biotechnology Springer Journals
Loading next page...
 
/lp/springer-journal/an-overview-on-fermentation-downstream-processing-and-properties-of-00XHZtuakg

You're reading a free preview. Subscribe to read the entire article.

And millions more from thousands of peer-reviewed journals, for just $40/month

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.

Stop missing out on the latest updates in your field

  • We’ll send you automatic email updates on the keywords and journals you tell us are most important to you.
  • There is a lot of content out there, so we help you sift through it and stay organized.