“Woah! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Get 2 Weeks Free

An Overview of Terrestrial Sequestration of Carbon Dioxide: the United States Department of Energy's Fossil Energy R&D Program

An Overview of Terrestrial Sequestration of Carbon Dioxide: the United States Department of Energy's Fossil Energy R&D Program Increasing concentrations of CO 2 and other greenhouse gases (GHG) in the Earth's atmosphere have the potential to enhance the natural greenhouse effect, which may result in climatic changes. The main anthropogenic contributors to this increase are fossil fuel combustion, land use conversion, and soil cultivation. It is clear that overcoming the challenge of global climate change will require a combination of approaches, including increased energy efficiency, energy conservation, alternative energy sources, and carbon (C) capture and sequestration. The United States Department of Energy (DOE) is sponsoring the development of new technologies that can provide energy and promote economic prosperity while reducing GHG emissions. One option that can contribute to achieving this goal is the capture and sequestration of CO 2 in geologic formations. An alternative approach is C sequestration in terrestrial ecosystsems through natural processes. Enhancing such natural pools (known as natural sequestration) can make a significant contribution to CO 2 management strategies with the potential to sequester about 290 Tg C/y in U.S. soils. In addition to soils, there is also a large potential for C sequestration in above and belowground biomass in forest ecosystems. A major area of interest to DOE's fossil energy program is reclaimed mined lands, of which there may be 0.63 ×10 6 ha in the U.S. These areas are essentially devoid of soil C; therefore, they provide an excellent opportunity to sequester C in both soils and vegetation. Measurement of C in these ecosystems requires the development of new technology and protocols that are accurate and economically viable. Field demonstrations are needed to accurately determine C sequestration potential and to demonstrate the ecological and aesthetic benefits in improved soil and water quality, increased biodiversity, and restored ecosystems. The DOE's research program in natural sequestration highlights fundamental and applied studies, such as the development of measurement, monitoring, and verification technologies and protocols and field tests aimed at developing techniques for maximizing the productivity of hitherto infertile soils and degraded ecosystems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Climatic Change Springer Journals
Loading next page...
 
/lp/springer-journal/an-overview-of-terrestrial-sequestration-of-carbon-dioxide-the-united-ILuy1j2lOd

You're reading a free preview. Subscribe to read the entire article.

And millions more from thousands of peer-reviewed journals, for just $40/month

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.

Stop missing out on the latest updates in your field

  • We’ll send you automatic email updates on the keywords and journals you tell us are most important to you.
  • There is a lot of content out there, so we help you sift through it and stay organized.