“Woah! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Get 2 Weeks Free

A novel micropit device integrates automated cell positioning by dielectrophoresis and nuclear transfer by electrofusion

A novel micropit device integrates automated cell positioning by dielectrophoresis and nuclear transfer by electrofusion Nuclear transfer (NT) cloning involves manual positioning of individual donor-recipient cell couplets for electrofusion. This is time-consuming and introduces operator-dependent variation as a confounding parameter in cloning trials. In order to automate the NT procedure, we developed a micro-fluidic device that integrates automated cell positioning and electrofusion of isolated cell couplets. A simple two layer micro-fluidic device was fabricated. Thin film interdigitated titanium electrodes (300 nm thick, 250 µm wide and 250 µm apart) were deposited on a solid borosilicate glass substrate. They were coated with a film of electrically insulating photosensitive epoxy polymer (SU-8) of either 4 or 22 µm thickness. Circular holes (“micropits”) measuring 10, 20, 30, 40 or 80 µm in diameter were fabricated above the electrodes. The device was immersed in hypo-osmolar fusion buffer and manually loaded with somatic donor cells and recipient oocytes. Dielectrophoresis (DEP) was used to attract cells towards the micropit and form couplets on the same side of the insulating film. Fusion pulses between 80 V and 120 V were applied to each couplet and fusion scored under a stereomicroscope. Automated couplet formation between oocytes and somatic cells was achieved using DEP. Bovine oocyte-oocyte, oocyte-follicular cells and oocyte-fibroblast couplets fused with up to 69% ( n = 13), 50% ( n = 30) and 78% ( n = 9) efficiency, respectively. Fusion rates were comparable to parallel plate or film electrodes that are conventionally used for bovine NT. This demonstrates proof-of-principle that a micropit device is capable of both rapid cell positioning and fusion. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biomedical Microdevices Springer Journals

Loading next page...
 
/lp/springer-journal/a-novel-micropit-device-integrates-automated-cell-positioning-by-FZuzFQIgEb

You're reading a free preview. Subscribe to read the entire article.

And millions more from thousands of peer-reviewed journals, for just $40/month

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.

Stop missing out on the latest updates in your field

  • We’ll send you automatic email updates on the keywords and journals you tell us are most important to you.
  • There is a lot of content out there, so we help you sift through it and stay organized.