“Woah! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Get 2 Weeks Free

Stress Analysis of Composite Plates with a Quasi-Square Cutout Subjected to Uniaxial Tension

Stress Analysis of Composite Plates with a Quasi-Square Cutout Subjected to Uniaxial Tension

Abstract

Perforated plates and shells with variously shaped cutout are often used in engineering structures. Despite the importance of the effects of cutout on the load-bearing capacity and stress concentration of such plates little research has focused on stress analysis of plates with special shaped cutout. This study investigates problems associated with the maximum stresses in perforated composite plates with quasi-square shaped cutouts. Analytical solution based on Lekhnitskii’s theory of anisotropic plate is utilized for stress analysis of composite plates with central square shaped cutout. The solution is capable of considering large variety of cutout shapes and loading conditions analytically. Parametric studies were conducted to investigate the effects of variation in cutout bluntness and orientation, material properties, and loading direction on the location and the value of the maximum stress in a flat composite plate subjected uni-axial tension load. Based on results presented herein, the maximum normalized stress of perforated composite plates can be significantly changed by using proper combination of material properties, fiber orientation, loading angle, cutout bluntness, and orientation.
Loading next page...
 
/lp/sage/stress-analysis-of-composite-plates-with-a-quasi-square-cutout-oUd1ong6D2

You're reading a free preview. Subscribe to read the entire article.

And millions more from thousands of peer-reviewed journals, for only $40/month.

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.

Stop missing out on the latest updates in your field

  • We’ll send you automatic email updates on the keywords and journals you tell us are most important to you.
  • There is a lot of content out there, so we help you sift through it and stay organized.