“Woah! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Get 2 Weeks Free

Combined β-adrenergic and corticosteroid receptor activation regulates AMPA receptor function in hippocampal neurons

Combined β-adrenergic and corticosteroid receptor activation regulates AMPA receptor function in hippocampal neurons

Abstract

Shortly after stress, limbic neurons are exposed to high levels of noradrenaline and corticosterone. These hormones are necessary for optimal behavioural adaptation. Behavioural effects critically depend on noradrenaline acting via β-adrenergic receptors, but these effects are strongly modulated by corticosterone, indicating putative interactions between the two hormones. Since both noradrenaline and corticosterone are known to quickly affect properties of AMPA-type glutamate receptors (AMPAR), we here examined – in hippocampal neurons – three parameters which give insight in the functionality of AMPARs: phosphorylation, surface expression and spontaneous synaptic transmission. In homogenates of adult hippocampal slices, application of corticosterone (30 nM for 15 min) by itself did not affect phosphorylation of the AMPAR GluA1 subunit at S845 or S831. Co-application of the β-adrenergic receptor agonist isoproterenol (10 µM) largely increased S845 (but not S831) phosphorylation. Corticosterone also did not change GluA1 and GluA2 surface expression in hippocampal primary cultures. However, combined administration of corticosterone and 1 µM isoproterenol – which by itself was ineffective – enhanced surface expression. Interestingly, 10 µM isoproterenol alone enhanced GluA1 surface expression, but this was decreased by corticosterone. Finally, in hippocampal primary cultures, the inter-event interval of miniature excitatory postsynaptic currents (mEPSCs) was decreased by the combination of 1 µM isoproterenol and corticosterone (which were ineffective by themselves) while the same combination did not affect the amplitude. We conclude that AMPAR phosphorylation, surface expression and mEPSC inter-event interval respond most strongly to a combination of corticosterone and β-adrenergic receptors. These combined hormonal effects on glutamate transmission might contribute to their memory-enhancing effects.
Loading next page...
Problems Reading this Article? Report Issue Here
 
/lp/sage/combined-adrenergic-and-corticosteroid-receptor-activation-regulates-IIW46g4ZC8

You're reading a free preview. Subscribe to read the entire article.

And millions more from thousands of peer-reviewed journals, for only $40/month.

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.

Stop missing out on the latest updates in your field

  • We’ll send you automatic email updates on the keywords and journals you tell us are most important to you.
  • There is a lot of content out there, so we help you sift through it and stay organized.