Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling

DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and... Dendritic cells (DCs) must travel through lymphatics to carry skin antigens into lymph nodes. The processes controlling their mobilization and migration have not been completely delineated. We studied how DCs in live mice respond to skin inflammation, transmigrate through lymphatic endothelium, and propagate in initial lymphatics. At steady state, dermal DCs remain sessile along blood vessels. Inflammation mobilizes them, accelerating their interstitial motility 2.5-fold. CCR7-deficient BMDCs crawl as fast as wild-type DCs but less persistently. We observed discrete depositions of CCL21 complexed with collagen-IV on the basement membrane of initial lymphatics. Activated DCs move directionally toward lymphatics, contact CCL21 puncta, and migrate through portals into the lumen. CCR7-deficient DCs arrive at lymphatics through random migration but fail to dock and transmigrate. Once inside vessels, wild-type DCs use lamellipodia to crawl along lymphatic endothelium and, sensing lymph flow, proceed downstream. DCs start drifting freely only in collecting lymphatics. These results demonstrate in vivo that the CCL21–CCR7 axis plays a dual role in DC mobilization: promoting both chemotaxis and arrest of DCs on lymphatic endothelium. Intralymphatic crawling, in which DCs combine active adhesion-based migration and directional cues from lymph flow, represents a new step in DC mobilization which may be amenable to regulation. Submitted: 15 November 2010 Accepted: 23 August 2011 This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms ). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/ ). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Experimental Medicine Rockefeller University Press

DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling

Loading next page...
 
/lp/rockefeller-university-press/dc-mobilization-from-the-skin-requires-docking-to-immobilized-ccl21-on-a75B5vpZD9

References (123)

Publisher
Rockefeller University Press
Copyright
© 2011 Tal et al.
ISSN
0022-1007
eISSN
1540-9538
DOI
10.1084/jem.20102392
pmid
21930767
Publisher site
See Article on Publisher Site

Abstract

Dendritic cells (DCs) must travel through lymphatics to carry skin antigens into lymph nodes. The processes controlling their mobilization and migration have not been completely delineated. We studied how DCs in live mice respond to skin inflammation, transmigrate through lymphatic endothelium, and propagate in initial lymphatics. At steady state, dermal DCs remain sessile along blood vessels. Inflammation mobilizes them, accelerating their interstitial motility 2.5-fold. CCR7-deficient BMDCs crawl as fast as wild-type DCs but less persistently. We observed discrete depositions of CCL21 complexed with collagen-IV on the basement membrane of initial lymphatics. Activated DCs move directionally toward lymphatics, contact CCL21 puncta, and migrate through portals into the lumen. CCR7-deficient DCs arrive at lymphatics through random migration but fail to dock and transmigrate. Once inside vessels, wild-type DCs use lamellipodia to crawl along lymphatic endothelium and, sensing lymph flow, proceed downstream. DCs start drifting freely only in collecting lymphatics. These results demonstrate in vivo that the CCL21–CCR7 axis plays a dual role in DC mobilization: promoting both chemotaxis and arrest of DCs on lymphatic endothelium. Intralymphatic crawling, in which DCs combine active adhesion-based migration and directional cues from lymph flow, represents a new step in DC mobilization which may be amenable to regulation. Submitted: 15 November 2010 Accepted: 23 August 2011 This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms ). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/ ).

Journal

The Journal of Experimental MedicineRockefeller University Press

Published: Sep 26, 2011

There are no references for this article.