“Woah! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Get 2 Weeks Free

Calcium control of ciliary arrest in mussel gill cells.

Calcium control of ciliary arrest in mussel gill cells. After several hours in 20 mM sodium phosphate and 40 mM KCI (pH 7.4) or similar simple solutions, ciliated cells exfoliate en masse from stripped gill epithelium of freshwater mussels, e.g., Elliptio complanatus. Three types of ciliated cells--lateral (L), laterofrontal (LF), and frontal (F)--can be distiniguished and counted separately in the suspensions. About one-half of the cells of each type remain motile. Motility is unaffected by addition of 10(-5) M A23187 or 10(-2) M Ca+2 added separately, but when ionophore and Ca+2 are added together, ciliary beat is largely arrested. Treatment of the cells with Triton X-100 (Rohm & Haas Co., Philadelphia, Pa.) results in a total loss of motility as the ciliary membrane becomes disrupted. Such models can be reactivated by addition of ATP and Mg+2. All ciliated cell types are reactivated to about the same extent. At least 80% of the activity of the untreated preparation returns. Ca+2-EGTA buffers added to the reactivating solutions permit titration of free Ca+2 concentration vs. percent motility. Activity is unchanged for all cell types at Ca+2 less than 10(-7) M; at 10(-6) Ca+2, L cilia of all cell types are arrested differentially, whereas at Ca+2 greater than 10(-4) M most cilia of all cell types are arrested. We conclude: (a) that increasing cytoplasmic Ca+2 is directly responsible for ciliary arrest, (b) that the readily reversible physiological arrest response of the L cilia in the intact gill is caused by a rise in free Ca+2 in narrow limits from ca. 5 x 10(-7) M to ca. 8 x 10(-7) M, and (c) that the site which is sensitive to Ca+2 is part of the ciliary axoneme or the basal apparatus. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Cell Biology Rockefeller University Press

Loading next page...
 
/lp/rockefeller-university-press/calcium-control-of-ciliary-arrest-in-mussel-gill-cells-JPAvHl7hzT

You're reading a free preview. Subscribe to read the entire article.

And millions more from thousands of peer-reviewed journals, for just $40/month

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.

Stop missing out on the latest updates in your field

  • We’ll send you automatic email updates on the keywords and journals you tell us are most important to you.
  • There is a lot of content out there, so we help you sift through it and stay organized.