Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

The SCFCdc4 ubiquitin ligase regulates calcineurin signaling through degradation of phosphorylated Rcn1, an inhibitor of calcineurin

The SCFCdc4 ubiquitin ligase regulates calcineurin signaling through degradation of... The highly conserved RCN family of proteins regulates the serine/threonine protein phosphatase calcineurin, which is required for the expression of genes involved in Ca2+-dependent processes, such as the control of memory, apoptosis, T cell activation, cell cycle, Ca2+-homeostasis, and skeletal and cardiac muscle growth and differentiation. However, RCNs regulate calcineurin through two paradoxical actions: they act as feedback inhibitors of calcineurin, whereas their phosphorylation stimulates calcineurin. Here we show that phosphorylation of yeast RCN, Rcn1, triggers degradation through the SCFCdc4 ubiquitin ligase complex. Degradation of phosphorylated Rcn1 is required to mitigate inhibition of calcineurin by Rcn1 and results in activation of calcineurin activity in response to Ca2+ as well as in reactivation of calcineurin in response to changes in Ca2+ concentration. The SCFCdc4-dependent degradation required phosphorylation of Rcn1 by Mck1, a member of the GSK3 family of protein kinases, and was promoted by Ca2+. However, such degradation was counteracted by dephosphorylation of Rcn1, which was promoted by Ca2+-stimulated calcineurin. Thus, calcineurin activity is fine-tuned to Ca2+ signals by mechanisms that have opposite functions. Our results identify the molecular mechanism of Rcn1 phosphorylation-induced stimulation of the phosphatase activity of calcineurin. The results provide insight into the mechanism involved in maintaining proper responses to Ca2+ signals. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings of the National Academy of Sciences PNAS

The SCFCdc4 ubiquitin ligase regulates calcineurin signaling through degradation of phosphorylated Rcn1, an inhibitor of calcineurin

The SCFCdc4 ubiquitin ligase regulates calcineurin signaling through degradation of phosphorylated Rcn1, an inhibitor of calcineurin

Proceedings of the National Academy of Sciences , Volume 104 (44): 17418 – Oct 30, 2007

Abstract

The highly conserved RCN family of proteins regulates the serine/threonine protein phosphatase calcineurin, which is required for the expression of genes involved in Ca2+-dependent processes, such as the control of memory, apoptosis, T cell activation, cell cycle, Ca2+-homeostasis, and skeletal and cardiac muscle growth and differentiation. However, RCNs regulate calcineurin through two paradoxical actions: they act as feedback inhibitors of calcineurin, whereas their phosphorylation stimulates calcineurin. Here we show that phosphorylation of yeast RCN, Rcn1, triggers degradation through the SCFCdc4 ubiquitin ligase complex. Degradation of phosphorylated Rcn1 is required to mitigate inhibition of calcineurin by Rcn1 and results in activation of calcineurin activity in response to Ca2+ as well as in reactivation of calcineurin in response to changes in Ca2+ concentration. The SCFCdc4-dependent degradation required phosphorylation of Rcn1 by Mck1, a member of the GSK3 family of protein kinases, and was promoted by Ca2+. However, such degradation was counteracted by dephosphorylation of Rcn1, which was promoted by Ca2+-stimulated calcineurin. Thus, calcineurin activity is fine-tuned to Ca2+ signals by mechanisms that have opposite functions. Our results identify the molecular mechanism of Rcn1 phosphorylation-induced stimulation of the phosphatase activity of calcineurin. The results provide insight into the mechanism involved in maintaining proper responses to Ca2+ signals.

Loading next page...
 
/lp/pnas/the-scfcdc4-ubiquitin-ligase-regulates-calcineurin-signaling-through-Ucr2zD0dt9

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
PNAS
Copyright
Copyright ©2009 by the National Academy of Sciences
ISSN
0027-8424
eISSN
1091-6490
Publisher site
See Article on Publisher Site

Abstract

The highly conserved RCN family of proteins regulates the serine/threonine protein phosphatase calcineurin, which is required for the expression of genes involved in Ca2+-dependent processes, such as the control of memory, apoptosis, T cell activation, cell cycle, Ca2+-homeostasis, and skeletal and cardiac muscle growth and differentiation. However, RCNs regulate calcineurin through two paradoxical actions: they act as feedback inhibitors of calcineurin, whereas their phosphorylation stimulates calcineurin. Here we show that phosphorylation of yeast RCN, Rcn1, triggers degradation through the SCFCdc4 ubiquitin ligase complex. Degradation of phosphorylated Rcn1 is required to mitigate inhibition of calcineurin by Rcn1 and results in activation of calcineurin activity in response to Ca2+ as well as in reactivation of calcineurin in response to changes in Ca2+ concentration. The SCFCdc4-dependent degradation required phosphorylation of Rcn1 by Mck1, a member of the GSK3 family of protein kinases, and was promoted by Ca2+. However, such degradation was counteracted by dephosphorylation of Rcn1, which was promoted by Ca2+-stimulated calcineurin. Thus, calcineurin activity is fine-tuned to Ca2+ signals by mechanisms that have opposite functions. Our results identify the molecular mechanism of Rcn1 phosphorylation-induced stimulation of the phosphatase activity of calcineurin. The results provide insight into the mechanism involved in maintaining proper responses to Ca2+ signals.

Journal

Proceedings of the National Academy of SciencesPNAS

Published: Oct 30, 2007

There are no references for this article.