Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Structure-activity relationship in vinculin: an IR/attenuated total reflection spectroscopic and film balance study

Structure-activity relationship in vinculin: an IR/attenuated total reflection spectroscopic and... Surfacing and membrane-penetrating ability of vinculin and bovine serum albumin have been studied on a macroscopic level by means of a Langmuir film balance and on a molecular level by means of infrared attenuated total reflection spectroscopy. It is suggested that the driving force of the nonspontaneous process of membrane penetration by native vinculin is the spontaneous formation of rigid vinculin monolayers in the membrane. Lateral adhesion of vinculin molecules results from the formation of intermolecular pleated-sheet structures. Vinculin surface activity was found to result from an alpha-helical segment oriented approximately perpendicular to plane of the membrane. There is a conformational equilibrium between this helix and random structure. High ionic strength (110 mM) favors helix formation that leads to the greater than 100-fold enhancement of surfacing velocity relative to the velocity observed at a lower ionic strength (10 mM). Vinculin has a second helical segment oriented parallel to the plane of the membrane that is in a conformational equilibrium with the pleated-sheet structure. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings of the National Academy of Sciences PNAS

Structure-activity relationship in vinculin: an IR/attenuated total reflection spectroscopic and film balance study

Structure-activity relationship in vinculin: an IR/attenuated total reflection spectroscopic and film balance study

Proceedings of the National Academy of Sciences , Volume 83 (5): 1315 – Mar 1, 1986

Abstract

Surfacing and membrane-penetrating ability of vinculin and bovine serum albumin have been studied on a macroscopic level by means of a Langmuir film balance and on a molecular level by means of infrared attenuated total reflection spectroscopy. It is suggested that the driving force of the nonspontaneous process of membrane penetration by native vinculin is the spontaneous formation of rigid vinculin monolayers in the membrane. Lateral adhesion of vinculin molecules results from the formation of intermolecular pleated-sheet structures. Vinculin surface activity was found to result from an alpha-helical segment oriented approximately perpendicular to plane of the membrane. There is a conformational equilibrium between this helix and random structure. High ionic strength (110 mM) favors helix formation that leads to the greater than 100-fold enhancement of surfacing velocity relative to the velocity observed at a lower ionic strength (10 mM). Vinculin has a second helical segment oriented parallel to the plane of the membrane that is in a conformational equilibrium with the pleated-sheet structure.

Loading next page...
 
/lp/pnas/structure-activity-relationship-in-vinculin-an-ir-attenuated-total-OCdpQ3WQ5x

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
PNAS
Copyright
Copyright ©2009 by the National Academy of Sciences
ISSN
0027-8424
eISSN
1091-6490
Publisher site
See Article on Publisher Site

Abstract

Surfacing and membrane-penetrating ability of vinculin and bovine serum albumin have been studied on a macroscopic level by means of a Langmuir film balance and on a molecular level by means of infrared attenuated total reflection spectroscopy. It is suggested that the driving force of the nonspontaneous process of membrane penetration by native vinculin is the spontaneous formation of rigid vinculin monolayers in the membrane. Lateral adhesion of vinculin molecules results from the formation of intermolecular pleated-sheet structures. Vinculin surface activity was found to result from an alpha-helical segment oriented approximately perpendicular to plane of the membrane. There is a conformational equilibrium between this helix and random structure. High ionic strength (110 mM) favors helix formation that leads to the greater than 100-fold enhancement of surfacing velocity relative to the velocity observed at a lower ionic strength (10 mM). Vinculin has a second helical segment oriented parallel to the plane of the membrane that is in a conformational equilibrium with the pleated-sheet structure.

Journal

Proceedings of the National Academy of SciencesPNAS

Published: Mar 1, 1986

There are no references for this article.