Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

TBX1 is required for inner ear morphogenesis

TBX1 is required for inner ear morphogenesis TBX1 is thought to be a critical gene in the pathogenesis of del22q11/DiGeorge syndrome (DGS). Morphological abnormalities of the external ear and hearing impairment (conductive or sensorineural) affect the majority of patients. Here we show that homozygous mutation of the mouse homolog Tbx1 is associated with severe inner ear defects that prevent the formation of the cochlea and of the vestibulum. Consistent with phenotypic abnormalities, Tbx1 is expressed early in otocyst development in the otic epithelium and in the periotic mesenchyme. Tbx1 loss-of-function blocks inner ear development at early otocyst stage and after neurogenesis. Analysis of chimeras suggests that Tbx1 function is required in the otic epithelium cell autonomously, but abnormalities of the periotic mesenchyme indicate that the pathogenesis of the inner ear phenotype is complex. We propose a model where Tbx1 is required for expansion of a subpopulation of otic epithelial cells, which is required to form the vestibular and auditory organs. Our data suggest that Tbx1 deletion in del22q11 patients may cause not only external and middle ear defects but also sensorineural and vestibular phenotypes observed in these patients. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Human Molecular Genetics Oxford University Press

Loading next page...
 
/lp/oxford-university-press/tbx1-is-required-for-inner-ear-morphogenesis-WlfKV9hO95

References (38)

Publisher
Oxford University Press
Copyright
© Published by Oxford University Press.
ISSN
0964-6906
eISSN
1460-2083
DOI
10.1093/hmg/ddg216
Publisher site
See Article on Publisher Site

Abstract

TBX1 is thought to be a critical gene in the pathogenesis of del22q11/DiGeorge syndrome (DGS). Morphological abnormalities of the external ear and hearing impairment (conductive or sensorineural) affect the majority of patients. Here we show that homozygous mutation of the mouse homolog Tbx1 is associated with severe inner ear defects that prevent the formation of the cochlea and of the vestibulum. Consistent with phenotypic abnormalities, Tbx1 is expressed early in otocyst development in the otic epithelium and in the periotic mesenchyme. Tbx1 loss-of-function blocks inner ear development at early otocyst stage and after neurogenesis. Analysis of chimeras suggests that Tbx1 function is required in the otic epithelium cell autonomously, but abnormalities of the periotic mesenchyme indicate that the pathogenesis of the inner ear phenotype is complex. We propose a model where Tbx1 is required for expansion of a subpopulation of otic epithelial cells, which is required to form the vestibular and auditory organs. Our data suggest that Tbx1 deletion in del22q11 patients may cause not only external and middle ear defects but also sensorineural and vestibular phenotypes observed in these patients.

Journal

Human Molecular GeneticsOxford University Press

Published: Aug 15, 2003

There are no references for this article.