Instant Access to the Journals You Need

for just $40 per month.

Get 2 Weeks Free

Right and left ventricular compliance in the hereditary cardiomyopathy of the Syrian hamster

Right and left ventricular compliance in the hereditary cardiomyopathy of the Syrian hamster


SUMMARY Ventricular pressure-volume curves were examined in 10 pre-oedematous cardiomyopathic Syrian hamsters, aged 120 d, and 10 oedematous cardiomyopathic hamsters, aged 210 d, and compared with 10 and 8 age-matched controls, respectively. Previous studies had shown filling pressures and cardiac output to be normal in the pre-oedematous stage. In contrast, the oedematous stage was characterised by elevated filling pressures and increased cardiac output, raising the question whether this stage represents true myocardial failure or circulatory congestion associated with decreased ventricular compliance. Compliance, defined as dV/dP, was derived simultaneously for both ventricles from post-mortem pressure-volume curves from 0 to 2.66 kPa (0 to 20 mmHg). Left ventricular tissue elastic modulus, E, defined as dσ/d∊ or the incremental stress (σ) for an increment of strain (∊), was derived from the compliance curves and certain linear dimensions of the heart. At isobaric intervals, compliance did not differ between control and myopathic ventricles. At pressures corresponding to previously measured, naturally prevailing end-diastolic pressures, the myopathic ventricles were significantly dilated in both stages; end-diastolic compliance was normal in pre-oedematous hamsters, but was significantly decreased in the oedematous animals. Left ventricular elastic modulus was elevated at all values of σ, in both groups of myopathic animals. Copyright © 1977, European Society of Cardiology
Loading next page...

You're reading a free preview. Subscribe to read the entire article.

And millions more from thousands of peer-reviewed journals, for only $40/month.

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.

Stop missing out on the latest updates in your field

  • We’ll send you automatic email updates on the keywords and journals you tell us are most important to you.
  • There is a lot of content out there, so we help you sift through it and stay organized.