Instant Access to the Journals you Need

Read Online + Print Articles, for just $40 a month.

Start Your Free Trial

γ-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin

γ-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin

Abstract

Abstract DNA double-strand breaks (DSBs) are extremely dangerous lesions with severe consequences for cell survival and the maintenance of genomic stability. In higher eukaryotic cells, DSBs in chromatin promptly initiate the phosphorylation of the histone H2A variant, H2AX, at Serine 139 to generate γ-H2AX. This phosphorylation event requires the activation of the phosphatidylinositol-3-OH-kinase-like family of protein kinases, DNA-PKcs, ATM, and ATR, and serves as a landing pad for the accumulation and retention of the central components of the signaling cascade initiated by DNA damage. Regions in chromatin with γ-H2AX are conveniently detected by immunofluorescence microscopy and serve as beacons of DSBs. This has allowed the development of an assay that has proved particularly useful in the molecular analysis of the processing of DSBs. Here, we first review the role of γ-H2AX in DNA damage response in the context of chromatin and discuss subsequently the use of this modification as a surrogate marker for mechanistic studies of DSB induction and processing. We conclude with a critical analysis of the strengths and weaknesses of the approach and present some interesting applications of the resulting methodology. © 2008 The Author(s) This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading next page...
 
/lp/oxford-university-press/h2ax-in-recognition-and-signaling-of-dna-double-strand-breaks-in-the-CXoL8m9oa9

You're reading a free preview. Subscribe to read or print the entire article.

And millions more from thousands of peer-reviewed journals, for just $40/month.

Start Your Free Trial

What content is in DeepDyve?

  • Read and share from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.

Rent Scholarly Articles?

  • Read the full article in your browser.
  • Each month you can print 20 pages for free.
  • Access all of your rentals from the cloud anywhere you have an internet connection.
  • Beautiful reading experience – Full charts and figures, just like the PDF.
  • Read as much as you'd like - whenever you'd like.

Happy Users

“In one word renting from DeepDyve is FANTASTIC!!! ... 99% of the time I only need access to an article for a month or so, so renting the articles is perfect for me.”

Adam S.

“Thanks for a great service! For an unaffiliated science blogger like myself this is like a dream come true.”

Seppo P.

“Hi guys, I cannot tell you how much I love this resource. Incredible. I really believe you've hit the nail on the head with this site in regards to solving the research-purchase issue.”

Daniel C.

“Let me seize this opportunity and congratulate you on the service you are rendering to the scientific community.”

Joao B.