Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Endogenous dynorphin in epileptogenesis and epilepsy: anticonvulsant net effect via kappa opioid receptors

Endogenous dynorphin in epileptogenesis and epilepsy: anticonvulsant net effect via kappa opioid... Neuropsychiatric disorders are one of the main challenges of human medicine with epilepsy being one of the most common serious disorders of the brain. Increasing evidence suggest neuropeptides, particularly the opioids, play an important role in epilepsy. However, little is known about the mechanisms of the endogenous opioid system in epileptogenesis and epilepsy. Therefore, we investigated the role of endogenous prodynorphin-derived peptides in epileptogenesis, acute seizure behaviour and epilepsy in prodynorphin-deficient mice.Compared with wild-type littermates, prodynorphin knockout mice displayed a significantly reduced seizure threshold as assessed by tail-vein infusion of the GABAA antagonist pentylenetetrazole. This phenotype could be entirely rescued by the kappa receptor-specific agonist U-50488, but not by the mu receptor-specific agonist DAMGO. The delta-specific agonist SNC80 decreased seizure threshold in both genotypes, wild-type and knockout. Pre-treatment with the kappa selective antagonist GNTI completely blocked the rescue effect of U-50488.Consistent with the reduced seizure threshold, prodynorphin knockout mice showed faster seizure onset and a prolonged time of seizure activity after intracisternal injection of kainic acid. Three weeks after local injection of kainic acid into the stratum radiatum CA1 of the dorsal hippocampus, prodynorphin knockout mice displayed an increased extent of granule cell layer dispersion and neuronal loss along the rostrocaudal axis of the ipsi- and partially also of the contralateral hippocampus. In the classical pentylenetetrazole kindling model, dynorphin-deficient mice showed significantly faster kindling progression with six out of eight animals displaying clonic seizures, while none of the nine wild-types exceeded rating 3 (forelimb clonus). Taken together, our data strongly support a critical role for dynorphin in the regulation of hippocampal excitability, indicating an anticonvulsant role of kappa opioid receptors, thereby providing a potential target for antiepileptic drugs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Brain Oxford University Press

Endogenous dynorphin in epileptogenesis and epilepsy: anticonvulsant net effect via kappa opioid receptors

Loading next page...
 
/lp/oxford-university-press/endogenous-dynorphin-in-epileptogenesis-and-epilepsy-anticonvulsant-RkFBcDURUZ

References (66)

Publisher
Oxford University Press
Copyright
© Published by Oxford University Press.
ISSN
0006-8950
eISSN
1460-2156
DOI
10.1093/brain/awl384
pmid
17347252
Publisher site
See Article on Publisher Site

Abstract

Neuropsychiatric disorders are one of the main challenges of human medicine with epilepsy being one of the most common serious disorders of the brain. Increasing evidence suggest neuropeptides, particularly the opioids, play an important role in epilepsy. However, little is known about the mechanisms of the endogenous opioid system in epileptogenesis and epilepsy. Therefore, we investigated the role of endogenous prodynorphin-derived peptides in epileptogenesis, acute seizure behaviour and epilepsy in prodynorphin-deficient mice.Compared with wild-type littermates, prodynorphin knockout mice displayed a significantly reduced seizure threshold as assessed by tail-vein infusion of the GABAA antagonist pentylenetetrazole. This phenotype could be entirely rescued by the kappa receptor-specific agonist U-50488, but not by the mu receptor-specific agonist DAMGO. The delta-specific agonist SNC80 decreased seizure threshold in both genotypes, wild-type and knockout. Pre-treatment with the kappa selective antagonist GNTI completely blocked the rescue effect of U-50488.Consistent with the reduced seizure threshold, prodynorphin knockout mice showed faster seizure onset and a prolonged time of seizure activity after intracisternal injection of kainic acid. Three weeks after local injection of kainic acid into the stratum radiatum CA1 of the dorsal hippocampus, prodynorphin knockout mice displayed an increased extent of granule cell layer dispersion and neuronal loss along the rostrocaudal axis of the ipsi- and partially also of the contralateral hippocampus. In the classical pentylenetetrazole kindling model, dynorphin-deficient mice showed significantly faster kindling progression with six out of eight animals displaying clonic seizures, while none of the nine wild-types exceeded rating 3 (forelimb clonus). Taken together, our data strongly support a critical role for dynorphin in the regulation of hippocampal excitability, indicating an anticonvulsant role of kappa opioid receptors, thereby providing a potential target for antiepileptic drugs.

Journal

BrainOxford University Press

Published: Apr 8, 2007

Keywords: temporal lobe epilepsy opioid system hippocampus seizure threshold excitatory neurotransmission

There are no references for this article.