“Woah! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $30/month

Computations for a Nonlinear Theory of Fluid Pressure Impulse

Computations for a Nonlinear Theory of Fluid Pressure Impulse During the impact of an ideal fluid on an impermeable surface, the velocity field undergoes a sudden change. For an irrotational flow the sudden change Q in the velocity potential is a harmonic function which satisfies a linear boundary condition on the solid surface of impact. But Q satisfies a nonlinear boundary condition on the free surface position at the instant of impact. Computations are presented which accurately solve the boundary‐value problem for Q in a region of fluid which describes the impact of a water wave on to a section of vertical wall. The fluid has a horizontal free surface at impact. The nonlinear term in the free‐surface boundary condition possesses a coefficient ∈. The results show that the nonlinear term increases the speed at which fluid begins to ascend close to the wall after impact, but this increase tends to zero as ∈ tends to zero. The results show that fluid impact problems can be treated effectively while neglecting the nonlinear convective terms in Euler's equations of ideal flow. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Quarterly Journal of Mechanics and Applied Mathematics Oxford University Press

Computations for a Nonlinear Theory of Fluid Pressure Impulse

Abstract

During the impact of an ideal fluid on an impermeable surface, the velocity field undergoes a sudden change. For an irrotational flow the sudden change Q in the velocity potential is a harmonic function which satisfies a linear boundary condition on the solid surface of impact. But Q satisfies a nonlinear boundary condition on the free surface position at the instant of impact. Computations are presented which accurately solve the boundary‐value problem for Q in a region of fluid which describes the impact of a water wave on to a section of vertical wall. The fluid has a horizontal free surface at impact. The nonlinear term in the free‐surface boundary condition possesses a coefficient ∈. The results show that the nonlinear term increases the speed at which fluid begins to ascend close to the wall after impact, but this increase tends to zero as ∈ tends to zero. The results show that fluid impact problems can be treated effectively while neglecting the nonlinear convective terms in Euler's equations of ideal flow.
Loading next page...
 
/lp/oxford-university-press/computations-for-a-nonlinear-theory-of-fluid-pressure-impulse-Dr7B0P10Fr

Sorry, we don't have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now: