“Woah! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Get 2 Weeks Free

Computations for a Nonlinear Theory of Fluid Pressure Impulse

Computations for a Nonlinear Theory of Fluid Pressure Impulse


During the impact of an ideal fluid on an impermeable surface, the velocity field undergoes a sudden change. For an irrotational flow the sudden change Q in the velocity potential is a harmonic function which satisfies a linear boundary condition on the solid surface of impact. But Q satisfies a nonlinear boundary condition on the free surface position at the instant of impact. Computations are presented which accurately solve the boundary‐value problem for Q in a region of fluid which describes the impact of a water wave on to a section of vertical wall. The fluid has a horizontal free surface at impact. The nonlinear term in the free‐surface boundary condition possesses a coefficient ∈. The results show that the nonlinear term increases the speed at which fluid begins to ascend close to the wall after impact, but this increase tends to zero as ∈ tends to zero. The results show that fluid impact problems can be treated effectively while neglecting the nonlinear convective terms in Euler's equations of ideal flow.
Loading next page...
Problems Reading this Article? Report Issue Here

You're reading a free preview. Subscribe to read the entire article.

And millions more from thousands of peer-reviewed journals, for only $40/month.

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.

Stop missing out on the latest updates in your field

  • We’ll send you automatic email updates on the keywords and journals you tell us are most important to you.
  • There is a lot of content out there, so we help you sift through it and stay organized.