“Woah! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Get 2 Weeks Free

Ammonium release by nitrogen sufficient diatoms in response to rapid increases in irradiance

Ammonium release by nitrogen sufficient diatoms in response to rapid increases in irradiance


It has been hypothesized that nitrogen-replete diatoms, but not flagellates, may release NO 2 – , NH 4 + or dissolved organic nitrogen (DON) following rapid increases in irradiance (and consequently an increase in cellular electron energy), as might be expected to occur in a vertically well mixed estuarine system. Just as the increase in irradiance leads to an increase in cellular energy, so too would a decrease in temperature, due to the temperature dependency of biosynthetic enzymes. This hypothesis was tested by comparing the response of nitrogen-replete diatoms ( Skeletomena costatum , Thalassiosira weissflogii and Chaetoceros sp.) and flagellates ( Dunaliella tertiolecta , Pavlova lutheri and Prorocentrum minimum ) to rapid increases in irradiance and decreases in temperature. Short-term (<3 h) changes in extracellular NO 2 – and NH 4 + concentrations were measured in cultures following these experimental shifts, as well as in cultures retained at the growth irradiance. Net rates of NO 2 – and NH 4 + release were calculated from the time course of extracellular nitrogen concentrations. As a fraction of NO 3 – uptake, NO 2 – release rates under the increased irradiance increased marginally relative to NO 2 – release rates under the growth irradiance. Release rates of NH 4 + under the increased irradiance increased nearly fivefold over release rates at the growth irradiance, and accounted for 84% of the NO 3 – uptake rate. In direct contrast to the diatom species, the flagellate species released NO 2 – under the higher experimental irradiance at rates one half those of the release rates under the growth irradiance, and continued to take up NH 4 + under both irradiance conditions. Within the experimental boundaries, these findings have important physiological and ecological implications. The magnitude of the observed nitrogen release represents a significant physiological sink for electrons and, in fact, calculations suggest that up to 62% of the total electrons harvested could be consumed. From an ecological perspective, these findings add to the body of literature which suggests that a significant fraction of the nitrogen that is taken up is ultimately released in dissolved form. More importantly, these data suggest that DON is not the only compound that phytoplankton may release in the aquatic environment.
Loading next page...
Problems Reading this Article? Report Issue Here

You're reading a free preview. Subscribe to read or print the entire article.

And millions more from thousands of peer-reviewed journals, for just $40/month.

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.

Stop missing out on the latest updates in your field

  • We’ll send you automatic email updates on the keywords and journals you tell us are most important to you.
  • There is a lot of content out there, so we help you sift through it and stay organized.