“Woah! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Get 2 Weeks Free

Reactive Oxygen Species, Isotope Effect, Essential Nutrients, and Enhanced Longevity

Reactive Oxygen Species, Isotope Effect, Essential Nutrients, and Enhanced Longevity


A method is proposed that has the potential to lessen detrimental damages caused by reactive oxygen species (ROS) to proteins, nucleic acids, lipids, and other components in living cells. Typically, ROS oxidize substrates by a mechanism involving hydrogen abstraction in a rate-limiting step. The sites within these (bio)molecules susceptible to oxidation by ROS can thus be “protected ” using heavier isotopes such as 2 H (D, deuterium) and 13 C (carbon-13). Ingestion of isotopically reinforced building blocks such as amino acids, lipids and components of nucleic acids and their subsequent incorporation into macromolecules would make these more stable to ROS courtesy of an isotope effect. The implications may include enhanced longevity and increased resistance to cancer and age-related diseases.
Loading next page...
Problems Reading this Article? Report Issue Here

You're reading a free preview. Subscribe to read the entire article.

And millions more from thousands of peer-reviewed journals, for only $40/month.

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.

Stop missing out on the latest updates in your field

  • We’ll send you automatic email updates on the keywords and journals you tell us are most important to you.
  • There is a lot of content out there, so we help you sift through it and stay organized.