“Woah! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Membrane-Perturbing Domains of HIV Type 1 Glycoprotein 41

Membrane-Perturbing Domains of HIV Type 1 Glycoprotein 41 Structural and functional studies were performed to assess the membrane actions of peptides based on HIV-1 glycoprotein 41,000 (gp41). Previous site-directed mutagenesis of gp41 has shown that amino acid changes in either the N-terminal fusion or N-leucine zipper region depressed viral infection and syncytium formation, while modifications in the C-leucine zipper domain both increased and decreased HIV fusion. Here, synthetic peptides were prepared corresponding to the N-terminal fusion region (FP-I; gp41 residues 519-541), the nearby N-leucine zipper domain (DP-107; gp41 residues 560-597), and the C-leucine zipper domain (DP-178; gp41 residues 645-680). With erythrocytes, FP-I or DP-107 induced dose-dependent hemolysis and promoted cell aggregation; FP-I was more hemolytic than DP-107, but each was equally effective in aggregating cells. DP-178 produced neither hemolysis nor aggregation, but blocked either FP-I- or DP-107-induced hemolysis and aggregation. Combined with previous nuclear magnetic resonance and Fourier transform infrared spectroscopic results, circular dichroism (CD) spectroscopy showed that the α-helicity for these peptides in solution decreased in the order: DP-107 >> DP-178 > FP-I. CD analysis also indicated binding of DP-178 to either DP-107 or FP-I. Consequently, DP-178 may inhibit the membrane actions mediated by either FP-I or DP-107 through direct peptide interactions in solution. These peptide results suggest that the corresponding N-terminal fusion and N-leucine zipper regions participate in HIV infection, by promoting membrane perturbations underlying the merging of the viral envelope with the cell surface. Further, the C-leucine zipper domain in "prefusion" HIV may inhibit these membrane activities by interacting with the N-terminal fusion and N-leucine zipper domains in unactivated gp41. Last, exogenous DP-178 may bind to the N-terminal and N-leucine zipper domains of gp41 that become exposed on HIV stimulation, thereby preventing the fusogenic actions of these gp41 regions leading to infection. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png AIDS Research and Human Retroviruses Mary Ann Liebert

Membrane-Perturbing Domains of HIV Type 1 Glycoprotein 41

Abstract

Structural and functional studies were performed to assess the membrane actions of peptides based on HIV-1 glycoprotein 41,000 (gp41). Previous site-directed mutagenesis of gp41 has shown that amino acid changes in either the N-terminal fusion or N-leucine zipper region depressed viral infection and syncytium formation, while modifications in the C-leucine zipper domain both increased and decreased HIV fusion. Here, synthetic peptides were prepared corresponding to the N-terminal fusion region (FP-I; gp41 residues 519-541), the nearby N-leucine zipper domain (DP-107; gp41 residues 560-597), and the C-leucine zipper domain (DP-178; gp41 residues 645-680). With erythrocytes, FP-I or DP-107 induced dose-dependent hemolysis and promoted cell aggregation; FP-I was more hemolytic than DP-107, but each was equally effective in aggregating cells. DP-178 produced neither hemolysis nor aggregation, but blocked either FP-I- or DP-107-induced hemolysis and aggregation. Combined with previous nuclear magnetic resonance and Fourier transform infrared spectroscopic results, circular dichroism (CD) spectroscopy showed that the α-helicity for these peptides in solution decreased in the order: DP-107 >> DP-178 > FP-I. CD analysis also indicated binding of DP-178 to either DP-107 or FP-I. Consequently, DP-178 may inhibit the membrane actions mediated by either FP-I or DP-107 through direct peptide interactions in solution. These peptide results suggest that the corresponding N-terminal fusion and N-leucine zipper regions participate in HIV infection, by promoting membrane perturbations underlying the merging of the viral envelope with the cell surface. Further, the C-leucine zipper domain in "prefusion" HIV may inhibit these membrane activities by interacting with the N-terminal fusion and N-leucine zipper domains in unactivated gp41. Last, exogenous DP-178 may bind to the N-terminal and N-leucine zipper domains of gp41 that become exposed on HIV stimulation, thereby preventing the fusogenic actions of these gp41 regions leading to infection.
Loading next page...
 
/lp/mary-ann-liebert/membrane-perturbing-domains-of-hiv-type-1-glycoprotein-41-W3tRwcJ6vd

Sorry, we don't have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now: