“Woah! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Get 2 Weeks Free

Evaluation of a Thin and Mechanically Stable Collagen Cell Carrier

Evaluation of a Thin and Mechanically Stable Collagen Cell Carrier


The biological function of adherent cell populations strongly depends on the physical and biochemical properties of extracellular matrix molecules. Therefore, numerous biocompatible cell carriers have been developed to specifically influence cell attachment, proliferation, cellular differentiation, and tissue formation for diverse cell culture applications and cell-based therapies. In the present study, we evaluated the mechanical and the cell biological properties of a novel, thin, and planar collagen scaffold. The cell carrier is based on fibrillar bovine collagen type I and exhibits a low material thickness coupled with a high mechanical stability as measured by tensile tests. The influence of this new biomaterial on cell viability, proliferation, and cell differentiation was analyzed using 5-bromo-2-deoxyuridine (BrdU) proliferation assay, immunocytochemistry, water-soluble tetrazolium salt-1 assay (WST-1), live cell imaging, and electron microscopy. Cell culture experiments with the human osteosarcoma cell line Saos-2, human mesenchymal stem cells, and rodent cardiomyocytes demonstrated the in vitro biocompatibility of this chemically noncrosslinked scaffold. Both the mechanical characteristics and the in vitro biocompatibility of this collagen type I carrier facilitate the engineering of thin transferable tissue constructs and offer new possibilities in the fields of cell culture techniques, tissue engineering, and regenerative medicine.
Loading next page...
Problems Reading this Article? Report Issue Here

You're reading a free preview. Subscribe to read the entire article.

And millions more from thousands of peer-reviewed journals, for only $40/month.

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.

Stop missing out on the latest updates in your field

  • We’ll send you automatic email updates on the keywords and journals you tell us are most important to you.
  • There is a lot of content out there, so we help you sift through it and stay organized.