Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Free vibration of rectangular plates with attached discrete sprung masses

Free vibration of rectangular plates with attached discrete sprung masses A direct approach is used to derive the exact solution for the free vibration of thin rectangular plates with discrete sprung masses attached. The plate is simply supported along two opposite edges and elastically supported along the two other edges. The elastic support can represent a range of boundary conditions from free to clamped supports. Considering only the compatibility of the internal forces between the plate and the sprung masses, the equations of the coupled vibration of the plate-spring-mass system are derived. The exact expressions for mode and frequency equations of the coupled vibration of the plate and sprung masses are determined. The solutions converge steadily and monotonically to exact values. The correctness and accuracy of the solutions are demonstrated through comparison with published results. A parametric study is undertaken focusing on the plate with one or two sprung masses. The results can be used as a benchmark for further investigation. The solution provided in the paper is general and includes several special cases, such as the plate with classical boundary conditions, the plate attached with discrete rigid masses, the plate supported by discrete springs and the plate restricted by rigid vertical point-supports. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Shock and Vibration IOS Press

Free vibration of rectangular plates with attached discrete sprung masses

Shock and Vibration , Volume 19 (1) – Jan 1, 2012

Loading next page...
 
/lp/ios-press/free-vibration-of-rectangular-plates-with-attached-discrete-sprung-DwBQJTppux

References (21)

Publisher
IOS Press
Copyright
Copyright © 2012 by IOS Press, Inc
ISSN
1070-9622
eISSN
1875-9203
DOI
10.3233/SAV-2012-0618
Publisher site
See Article on Publisher Site

Abstract

A direct approach is used to derive the exact solution for the free vibration of thin rectangular plates with discrete sprung masses attached. The plate is simply supported along two opposite edges and elastically supported along the two other edges. The elastic support can represent a range of boundary conditions from free to clamped supports. Considering only the compatibility of the internal forces between the plate and the sprung masses, the equations of the coupled vibration of the plate-spring-mass system are derived. The exact expressions for mode and frequency equations of the coupled vibration of the plate and sprung masses are determined. The solutions converge steadily and monotonically to exact values. The correctness and accuracy of the solutions are demonstrated through comparison with published results. A parametric study is undertaken focusing on the plate with one or two sprung masses. The results can be used as a benchmark for further investigation. The solution provided in the paper is general and includes several special cases, such as the plate with classical boundary conditions, the plate attached with discrete rigid masses, the plate supported by discrete springs and the plate restricted by rigid vertical point-supports.

Journal

Shock and VibrationIOS Press

Published: Jan 1, 2012

There are no references for this article.