Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

The maximum-entropy method in superspace

The maximum-entropy method in superspace One of the applications of the maximum-entropy method (MEM) in crystallography is the reconstruction of the electron density from phased structure factors. Here the application of the MEM to incommensurately modulated crystals and incommensurate composite crystals is considered. The MEM is computed directly in superspace, where the electron density in the (3+d)-dimensional unit cell (d > 0) is determined from the scattering data of aperiodic crystals. Periodic crystals (d = 0) are treated as a special case of the general formalism. The use of symmetry in the MEM is discussed and an efficient algorithm is proposed for handling crystal symmetry. The method has been implemented into a computer program BayMEM and applications are presented to the electron density of the periodic crystal NaV2O5 and the electron density of the incommensurate composite crystal (LaS)1.14NbS2. The MEM in superspace is shown to provide a model-independent estimate of the shapes of the modulation functions of incommensurate crystals. The discrete character of the electron density is found to be the major source of error, limiting the accuracy of the reconstructed modulation functions to approximately 10% of the sizes of the pixels. MaxEnt optimization using the Cambridge and Sakata-Sato algorithms are compared. The Cambridge algorithm is found to perform better than the Sakata-Sato algorithm, being faster, always reaching convergence, and leading to more reliable density maps. Nevertheless, the Sakata-Sato algorithm leads to similar density maps, even in cases where it does not reach complete convergence. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Acta Crystallographica Section A: Foundations of Crystallography International Union of Crystallography

The maximum-entropy method in superspace

The maximum-entropy method in superspace


Abstract

One of the applications of the maximum-entropy method (MEM) in crystallography is the reconstruction of the electron density from phased structure factors. Here the application of the MEM to incommensurately modulated crystals and incommensurate composite crystals is considered. The MEM is computed directly in superspace, where the electron density in the (3+d)-dimensional unit cell (d > 0) is determined from the scattering data of aperiodic crystals. Periodic crystals (d = 0) are treated as a special case of the general formalism. The use of symmetry in the MEM is discussed and an efficient algorithm is proposed for handling crystal symmetry. The method has been implemented into a computer program BayMEM and applications are presented to the electron density of the periodic crystal NaV2O5 and the electron density of the incommensurate composite crystal (LaS)1.14NbS2. The MEM in superspace is shown to provide a model-independent estimate of the shapes of the modulation functions of incommensurate crystals. The discrete character of the electron density is found to be the major source of error, limiting the accuracy of the reconstructed modulation functions to approximately 10% of the sizes of the pixels. MaxEnt optimization using the Cambridge and Sakata-Sato algorithms are compared. The Cambridge algorithm is found to perform better than the Sakata-Sato algorithm, being faster, always reaching convergence, and leading to more reliable density maps. Nevertheless, the Sakata-Sato algorithm leads to similar density maps, even in cases where it does not reach complete convergence.

Loading next page...
 
/lp/international-union-of-crystallography/the-maximum-entropy-method-in-superspace-0cnlMfrV0u

References (27)

Publisher
International Union of Crystallography
Copyright
Copyright (c) 2003 International Union of Crystallography
Subject
maximum-entropy method, aperiodic crystals, electron density
ISSN
0108-7673
eISSN
1600-5724
DOI
10.1107/S010876730301434X
pmid
12944610
Publisher site
See Article on Publisher Site

Abstract

One of the applications of the maximum-entropy method (MEM) in crystallography is the reconstruction of the electron density from phased structure factors. Here the application of the MEM to incommensurately modulated crystals and incommensurate composite crystals is considered. The MEM is computed directly in superspace, where the electron density in the (3+d)-dimensional unit cell (d > 0) is determined from the scattering data of aperiodic crystals. Periodic crystals (d = 0) are treated as a special case of the general formalism. The use of symmetry in the MEM is discussed and an efficient algorithm is proposed for handling crystal symmetry. The method has been implemented into a computer program BayMEM and applications are presented to the electron density of the periodic crystal NaV2O5 and the electron density of the incommensurate composite crystal (LaS)1.14NbS2. The MEM in superspace is shown to provide a model-independent estimate of the shapes of the modulation functions of incommensurate crystals. The discrete character of the electron density is found to be the major source of error, limiting the accuracy of the reconstructed modulation functions to approximately 10% of the sizes of the pixels. MaxEnt optimization using the Cambridge and Sakata-Sato algorithms are compared. The Cambridge algorithm is found to perform better than the Sakata-Sato algorithm, being faster, always reaching convergence, and leading to more reliable density maps. Nevertheless, the Sakata-Sato algorithm leads to similar density maps, even in cases where it does not reach complete convergence.

Journal

Acta Crystallographica Section A: Foundations of CrystallographyInternational Union of Crystallography

Published: Aug 29, 2003

Keywords: maximum-entropy method; aperiodic crystals; electron density.

There are no references for this article.