Instant Access to the Journals You Need

for just $40 per month.

Structure of a Basic Phospholipase A2 from Agkistrodon halys Pallas at 2.13 A Resolution

Structure of a Basic Phospholipase A2 from Agkistrodon halys Pallas at 2.13 A Resolution


The basic phospholipase A2 isolated from the venom of Agkistrodon halys Pallas (Agkistrodon blomhoffii Brevicaudus) is a hemolytic toxin and one of the few PLA2's capable of hydrolyzing the phospholipids of E. coli membranes in the presence of a bactericidal/permeability-increasing protein (BPI) of neutrophils. The crystal structure has been determined and refined at 2.13 A to a R factor of 16.5% (F > 3) with excellent stereochemistry. A superposition of the two molecules in the asymmetric unit gives an r.m.s. deviation of 0.326 A for all C atoms. The refined structure allowed a detailed comparison with other PLA2 species of known structures. The overall architecture is similar to those of other PLA2's with a few significant differences. One of which is in the region connecting the N-terminal helix and the Ca2+-binding loop. Unexpectedly, the conformation of the peptide plane Cys29-Gly30 in the Ca2+-binding loop is very different to that of other PLA2's. The amide NH of Gly30 does not point toward the proposed site for stabilization of the tetrahedral intermediate oxyanion of the substrate analogue. The structure includes four residues which occur less frequently in other PLA2's. His1, Arg6 and Trp70 located at the interfacial recognition site may play an important role in the interaction with aggregated substrates, while Trp77 contributes to the hydrophobic interactions between the -wing and the main body of the molecule. This structure analysis reveals that two clusters of basic residues are located at or near the interfacial recognition site, forming an asymmetric positively charge distribution. In contrast to the acidic isoform, the present enzyme is a dimer in the crystalline state. The special phospholipid hydrolysis behaviors are discussed in the light of the structure determined.
Loading next page...

You're reading a free preview. Sign up for a free trial to continue reading.

By signing up, you agree to DeepDyve's Terms of Service and Privacy Policy.

What content is in DeepDyve?

  • Read and share from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.

Rent Scholarly Articles?

  • Read the full article in your browser.
  • Access all of your rentals from the cloud anywhere you have an internet connection.
  • Beautiful reading experience – Full charts and figures, just like the PDF.
  • Read as much as you'd like - whenever you'd like.

Happy Users

“In one word renting from DeepDyve is FANTASTIC!!! ... 99% of the time I only need access to an article for a month or so, so renting the articles is perfect for me.”

Adam S.

“Thanks for a great service! For an unaffiliated science blogger like myself this is like a dream come true.”

Seppo P.

“Hi guys, I cannot tell you how much I love this resource. Incredible. I really believe you've hit the nail on the head with this site in regards to solving the research-purchase issue.”

Daniel C.

“Let me seize this opportunity and congratulate you on the service you are rendering to the scientific community.”

Joao B.