Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A database analysis of potential glycosylating Asn-X-Ser/Thr consensus sequences

A database analysis of potential glycosylating Asn-X-Ser/Thr consensus sequences An analysis of the frequency of occurrence of various residues at position X was carried out on the consensus glycosylating sequence Asn-X-Ser/Thr using the PDB three-dimensional database. 488 non-homologous proteins bearing 696 Asn-X-Ser/Thr (X Pro) sequences were analysed. More than 65% of Asn residues, when they occur as part of the consensus sequence, lie on the surface of the protein, implying a potentiality for glycosylation. A deviation parameter (DP) was calculated as a measure of preferential (positive) or non-preferential (negative) selection. At the X position in the consensus-sequence segment, the amino acids Gly, Asn and Phe have statistically significant positive DP values. The high value of DP for Asn is a consequence of the preferential occurrence of homodoublets, while for Phe it may be a consequence of the stacking interaction of the aromatic ring with the glycan. Gly at the X position in the consensus glycosylating sequence may be functionally significant owing to its preference and its high percentage of occurrence in proteins. The Ramachandran (,) angles around Gly in the consensus sequence show clustering in the region which is disallowed for non-glycyl residues. In this region, a hydrogen bond between the side chain of Asn and the peptide backbone/side chain of Ser/Thr is possible, reflecting a positional as well as a conformational role in the consensus glycosylating sequence. For the 44 confirmed N-glycosylating sequences, an in-depth analysis of the (N, X, X, S/T) dihedral angles, which position the side chains of Asn and Ser/Thr, shows that these can be grouped into nine conformational states. In most cases, a direct or water-mediated hydrogen bond between OD1 of Asn and OG of Ser/Thr is possible, reflecting the possible importance of this hydrogen bonding in the glycosylation process. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Acta Crystallographica Section D: Biological Crystallography International Union of Crystallography

A database analysis of potential glycosylating Asn-X-Ser/Thr consensus sequences

A database analysis of potential glycosylating Asn-X-Ser/Thr consensus sequences

Acta Crystallographica Section D: Biological Crystallography , Volume 55 (8): 1414 – Aug 1, 1999

Abstract

An analysis of the frequency of occurrence of various residues at position X was carried out on the consensus glycosylating sequence Asn-X-Ser/Thr using the PDB three-dimensional database. 488 non-homologous proteins bearing 696 Asn-X-Ser/Thr (X Pro) sequences were analysed. More than 65% of Asn residues, when they occur as part of the consensus sequence, lie on the surface of the protein, implying a potentiality for glycosylation. A deviation parameter (DP) was calculated as a measure of preferential (positive) or non-preferential (negative) selection. At the X position in the consensus-sequence segment, the amino acids Gly, Asn and Phe have statistically significant positive DP values. The high value of DP for Asn is a consequence of the preferential occurrence of homodoublets, while for Phe it may be a consequence of the stacking interaction of the aromatic ring with the glycan. Gly at the X position in the consensus glycosylating sequence may be functionally significant owing to its preference and its high percentage of occurrence in proteins. The Ramachandran (,) angles around Gly in the consensus sequence show clustering in the region which is disallowed for non-glycyl residues. In this region, a hydrogen bond between the side chain of Asn and the peptide backbone/side chain of Ser/Thr is possible, reflecting a positional as well as a conformational role in the consensus glycosylating sequence. For the 44 confirmed N-glycosylating sequences, an in-depth analysis of the (N, X, X, S/T) dihedral angles, which position the side chains of Asn and Ser/Thr, shows that these can be grouped into nine conformational states. In most cases, a direct or water-mediated hydrogen bond between OD1 of Asn and OG of Ser/Thr is possible, reflecting the possible importance of this hydrogen bonding in the glycosylation process.

Loading next page...
 
/lp/international-union-of-crystallography/a-database-analysis-of-potential-glycosylating-asn-x-ser-thr-consensus-3IbG026kzb

References (19)

Publisher
International Union of Crystallography
Copyright
Copyright (c) 1999 International Union of Crystallography
Subject
conformation, consensus sequences, glycosylation, hydrogen bonding, PDB database
ISSN
0907-4449
eISSN
1399-0047
DOI
10.1107/S0907444999006010
Publisher site
See Article on Publisher Site

Abstract

An analysis of the frequency of occurrence of various residues at position X was carried out on the consensus glycosylating sequence Asn-X-Ser/Thr using the PDB three-dimensional database. 488 non-homologous proteins bearing 696 Asn-X-Ser/Thr (X Pro) sequences were analysed. More than 65% of Asn residues, when they occur as part of the consensus sequence, lie on the surface of the protein, implying a potentiality for glycosylation. A deviation parameter (DP) was calculated as a measure of preferential (positive) or non-preferential (negative) selection. At the X position in the consensus-sequence segment, the amino acids Gly, Asn and Phe have statistically significant positive DP values. The high value of DP for Asn is a consequence of the preferential occurrence of homodoublets, while for Phe it may be a consequence of the stacking interaction of the aromatic ring with the glycan. Gly at the X position in the consensus glycosylating sequence may be functionally significant owing to its preference and its high percentage of occurrence in proteins. The Ramachandran (,) angles around Gly in the consensus sequence show clustering in the region which is disallowed for non-glycyl residues. In this region, a hydrogen bond between the side chain of Asn and the peptide backbone/side chain of Ser/Thr is possible, reflecting a positional as well as a conformational role in the consensus glycosylating sequence. For the 44 confirmed N-glycosylating sequences, an in-depth analysis of the (N, X, X, S/T) dihedral angles, which position the side chains of Asn and Ser/Thr, shows that these can be grouped into nine conformational states. In most cases, a direct or water-mediated hydrogen bond between OD1 of Asn and OG of Ser/Thr is possible, reflecting the possible importance of this hydrogen bonding in the glycosylation process.

Journal

Acta Crystallographica Section D: Biological CrystallographyInternational Union of Crystallography

Published: Aug 1, 1999

Keywords: conformation; consensus sequences; glycosylation; hydrogen bonding; PDB database.

There are no references for this article.