“Woah! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Get 2 Weeks Free

Requirements for performance characterization of C double-layer supercapacitors: Applications to a high specific-area C-cloth material

Requirements for performance characterization of C double-layer supercapacitors: Applications to a high specific-area C-cloth material Electrochemical capacitors, based on the double-layer capacitance of high specific-area C materials, are attracting major fundamental and technological interest as highly reversible, electrical charge-storage and delivery devices, capable of being operated at high power-densities. A variety of applications have been described in the literature, e.g. for cold-start vehicle assist, in hybrid load-leveling configurations with batteries, fuel-cells, as well as directly with internal combustion engines. Additionally, high capacitance C electrodes have been usefully employed as anodes coupled with battery-type cathodes, e.g. Pb/PbO 2 , in so-called “asymmetric” capacitor cells. On account of these perceived various applications, requirements for performance evaluation must be developed in systematic and complementary ways. In the present paper, we examine experimentally the following test procedures as exemplified by application to an high specific-area (ca. 2500 m 2 g −1 ) woven C-cloth capacitor electrode material: (i) evaluation of the specific capacitances as a function of charge/discharge rates employing cyclic-voltammetry and dc charging curves; (ii) as in (i), examination of reversibility and energy-efficiency as a function of electrolyte (H 2 SO 4 ) concentration, i.e. conductivity; (iii) interpretation of effects in (i) and (ii) in terms of distributed resistance and capacitance in the porous C matrix according to the de Levie model; (iv) interpretation of data obtained in (i) in terms of Ragone plots which, for capacitor devices, require special treatment owing to the fundamental dependence of electrode- (or device) potential on state of discharge; (v) interpretation of self-discharge (SD) kinetics in terms of porous-electrode structure. Performance data for the C-electrode are given for capacitative charging up to high “C-rates”, extension of operational voltage windows and for SD behaviour. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Power Sources Elsevier
Loading next page...
 
/lp/elsevier/requirements-for-performance-characterization-of-c-double-layer-u000dlyRyV

You're reading a free preview. Subscribe to read the entire article.

And millions more from thousands of peer-reviewed journals, for just $40/month

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.

Stop missing out on the latest updates in your field

  • We’ll send you automatic email updates on the keywords and journals you tell us are most important to you.
  • There is a lot of content out there, so we help you sift through it and stay organized.