“Woah! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Get 2 Weeks Free

Computational model prospective on the observation of proictal states in epileptic neuronal systems

Computational model prospective on the observation of proictal states in epileptic neuronal systems Epilepsy is a pathological condition of the human central nervous system in which normal brain functions are impaired by unexpected transitions to states called seizures. We developed a lumped neuronal model that has the property of switching between two states as a result of intrinsic or extrinsic perturbations, such as noisy fluctuations. In one version of the model, seizure risk is controlled by a single connectivity parameter representing excitatory couplings between two model lumps. We show that this risk can be reconstructed from calculation of the cross-covariance between the activities of the two neural populations during the nonictal phase. In a second simulation sequence, we use a system of 10 interconnected lumps with randomly generated connectivity matrices. We show again that the tendency to develop seizures can be inferred from the cross-covariances calculated during the nonictal states. Our conclusion is that the risk of epileptic transitions in biological systems can be objectively quantified. This article is part of a Supplemental Special Issue entitled The Future of Automated Seizure Detection and Prediction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Epilepsy & Behavior Elsevier
Loading next page...
 
/lp/elsevier/computational-model-prospective-on-the-observation-of-proictal-states-ZHBDZEmU2Z

You're reading a free preview. Subscribe to read or print the entire article.

And millions more from thousands of peer-reviewed journals, for just $40/month

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.

Stop missing out on the latest updates in your field

  • We’ll send you automatic email updates on the keywords and journals you tell us are most important to you.
  • There is a lot of content out there, so we help you sift through it and stay organized.