“Woah! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Get 2 Weeks Free

A “chimera” theory on the origin of dicyemid mesozoans: evolution driven by frequent lateral gene transfer from host to parasite

A “chimera” theory on the origin of dicyemid mesozoans: evolution driven by frequent lateral gene transfer from host to parasite The phylogenetic status of the enigmatic dicyemid mesozoans is still uncertain. Are they primitive multicellular organisms or degenerate triploblastic animals? Presently, the latter view is accepted. A phylogenetic analysis of 18S rDNA sequences placed dicyemids within the animal clade, and this was supported by the discovery of a Hox-type gene with a lophotrochozoan signature sequence. This molecular information suggests that dicyemid mesozoans evolved from an ancestral animal degenerately. Considering their extreme simplicity, which is probably due to parasitism, they might have come from an early embryo via a radical transformation, i.e. neoteny. Irrespective of this molecular information, dicyemid mesozoans retain many protistan-like or extremely primitive features, such as tubular mitochondrial cristae, endocytic ability from the outer surface, and the absence of collagenous tissue, while they do not share noticeable synapomorphy with animals. In addition, the 5S rRNA phylogeny suggests a somewhat closer kinship with protozoan ciliates than with animals. If we accept this clear contradiction, dicyemids should be regarded as a chimera of animals and protistans. Here, we discuss the traditional theory of extreme degeneration via parasitism, and then propose a new “chimera” theory in which dicyemid mesozoans are exposed to a continual flow of genetic information via eating host tissues from the outer surface by endocytosis. Consequently, many of their intrinsic genes have been replaced by host-derived genes through lateral gene transfer (LGT), implying that LGT is a key driving force in the evolution of dicyemid mesozoans. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biosystems Elsevier
Loading next page...
 
/lp/elsevier/a-chimera-theory-on-the-origin-of-dicyemid-mesozoans-evolution-driven-QmM6aNGyog

You're reading a free preview. Subscribe to read the entire article.

And millions more from thousands of peer-reviewed journals, for just $40/month

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.

Stop missing out on the latest updates in your field

  • We’ll send you automatic email updates on the keywords and journals you tell us are most important to you.
  • There is a lot of content out there, so we help you sift through it and stay organized.