“Woah! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Get 2 Weeks Free

High dynamic range—a gateway for predictive ancient lighting

High dynamic range—a gateway for predictive ancient lighting In the last few years, the number of projects involving historical reconstruction has increased significantly. Recent technologies have proven a powerful tool for a better understanding of our cultural heritage through which to attain a glimpse of the environments in which our ancestors lived. However, to accomplish such a purpose, these reconstructions should be presented to us as they may really have been perceived by a local inhabitant, according to the illumination and materials used back then and, equally important, the characteristics of the human visual system. The human visual system has a remarkable ability to adjust itself to almost all everyday scenarios. This is particularly evident in extreme lighting conditions, such as bright light or dark environments. However, a major portion of the visible spectra captured by our visual system cannot be represented in most display devices. High dynamic range imagery is a field of research which is developing techniques to correct such inaccuracies. This new viewing paradigm is perfectly suited for archaeological interpretation, since its high contrast and chromaticity can present us with an enhanced viewing experience, closer to what an inhabitant of that era may have seen. In this article we present a case study of the reconstruction of a Roman site. We generate high dynamic range images of mosaics and frescoes from one of the most impressive monuments in the ruins of Conimbriga, Portugal, an ancient city of the Roman Empire. To achieve the requisite level of precision, in addition to having a precise geometric 3D model, it is crucial to integrate in the virtual simulation authentic physical data of the light used in the period under consideration. Therefore, in order to create a realistic physical-based environment, we use in our lighting simulations real data obtained from simulated Roman luminaries of that time. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal on Computing and Cultural Heritage (JOCCH) Association for Computing Machinery

Loading next page...
 
/lp/association-for-computing-machinery/high-dynamic-range-a-gateway-for-predictive-ancient-lighting-BlA5C01vMm

You're reading a free preview. Subscribe to read or print the entire article.

And millions more from thousands of peer-reviewed journals, for just $40/month

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.

Stop missing out on the latest updates in your field

  • We’ll send you automatic email updates on the keywords and journals you tell us are most important to you.
  • There is a lot of content out there, so we help you sift through it and stay organized.