Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Role of AbrB in Spo0A- and Spo0B-dependent utilization of a sporulation promoter in Bacillus subtilis.

Role of AbrB in Spo0A- and Spo0B-dependent utilization of a sporulation promoter in Bacillus... Role of AbrB in Spo0A- and Spo0B-dependent utilization of a sporulation promoter in Bacillus subtilis. P Zuber and R Losick ABSTRACT Transcription of the Bacillus subtilis gene spoVG is induced at the onset of sporulation and is dependent on the products of the stage-0 regulatory genes spo0A, spo0B, and spo0H. We show here that the dependence of spoVG transcription on Spo0A and Spo0B (but not Spo0H) can be bypassed by a mutation at abrB, a previously identified locus at which mutations that suppress some of the phenotypes of spo0A are often located, or by a cis-acting mutation within the spoVG promoter. To explain the epistatis of abrB to spo0A and spo0B mutations, we propose that AbrB acts, directly or indirectly, to block transcription of spoVG and that Spo0A and Spo0B cause inactivation of the abrB gene product(s). Spo0A-Spo0B-dependent inactivation of AbrB could be a general explanation for the pleiotropic effects of spo0A and spo0B mutations on B. subtilis gene expression. CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article J. Bacteriol. May 1987 vol. 169 no. 5 2223-2230 » Abstract PDF Classifications Research Article Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of JB Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Zuber, P. Articles by Losick, R. Search for related content PubMed PubMed citation Articles by Zuber, P. Articles by Losick, R. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue December 2011, volume 193, issue 24 Alert me to new issues of JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0021-9193 Online ISSN: 1098-5530 Copyright © 2011 by the American Society for Microbiology. For an alternate route to JB .asm.org, visit: http://intl- JB .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-9"); pageTracker._trackPageview(); http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Bacteriology American Society For Microbiology

Role of AbrB in Spo0A- and Spo0B-dependent utilization of a sporulation promoter in Bacillus subtilis.

Journal of Bacteriology , Volume 169 (5): 2223 – May 1, 1987

Role of AbrB in Spo0A- and Spo0B-dependent utilization of a sporulation promoter in Bacillus subtilis.

Journal of Bacteriology , Volume 169 (5): 2223 – May 1, 1987

Abstract

Role of AbrB in Spo0A- and Spo0B-dependent utilization of a sporulation promoter in Bacillus subtilis. P Zuber and R Losick ABSTRACT Transcription of the Bacillus subtilis gene spoVG is induced at the onset of sporulation and is dependent on the products of the stage-0 regulatory genes spo0A, spo0B, and spo0H. We show here that the dependence of spoVG transcription on Spo0A and Spo0B (but not Spo0H) can be bypassed by a mutation at abrB, a previously identified locus at which mutations that suppress some of the phenotypes of spo0A are often located, or by a cis-acting mutation within the spoVG promoter. To explain the epistatis of abrB to spo0A and spo0B mutations, we propose that AbrB acts, directly or indirectly, to block transcription of spoVG and that Spo0A and Spo0B cause inactivation of the abrB gene product(s). Spo0A-Spo0B-dependent inactivation of AbrB could be a general explanation for the pleiotropic effects of spo0A and spo0B mutations on B. subtilis gene expression. CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article J. Bacteriol. May 1987 vol. 169 no. 5 2223-2230 » Abstract PDF Classifications Research Article Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of JB Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Zuber, P. Articles by Losick, R. Search for related content PubMed PubMed citation Articles by Zuber, P. Articles by Losick, R. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue December 2011, volume 193, issue 24 Alert me to new issues of JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0021-9193 Online ISSN: 1098-5530 Copyright © 2011 by the American Society for Microbiology. For an alternate route to JB .asm.org, visit: http://intl- JB .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-9"); pageTracker._trackPageview();

Loading next page...
 
/lp/american-society-for-microbiology/role-of-abrb-in-spo0a-and-spo0b-dependent-utilization-of-a-sporulation-onmEVAveqA

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
American Society For Microbiology
Copyright
Copyright © 1987 by the American society for Microbiology.
ISSN
0021-9193
eISSN
1098-5530
Publisher site
See Article on Publisher Site

Abstract

Role of AbrB in Spo0A- and Spo0B-dependent utilization of a sporulation promoter in Bacillus subtilis. P Zuber and R Losick ABSTRACT Transcription of the Bacillus subtilis gene spoVG is induced at the onset of sporulation and is dependent on the products of the stage-0 regulatory genes spo0A, spo0B, and spo0H. We show here that the dependence of spoVG transcription on Spo0A and Spo0B (but not Spo0H) can be bypassed by a mutation at abrB, a previously identified locus at which mutations that suppress some of the phenotypes of spo0A are often located, or by a cis-acting mutation within the spoVG promoter. To explain the epistatis of abrB to spo0A and spo0B mutations, we propose that AbrB acts, directly or indirectly, to block transcription of spoVG and that Spo0A and Spo0B cause inactivation of the abrB gene product(s). Spo0A-Spo0B-dependent inactivation of AbrB could be a general explanation for the pleiotropic effects of spo0A and spo0B mutations on B. subtilis gene expression. CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article J. Bacteriol. May 1987 vol. 169 no. 5 2223-2230 » Abstract PDF Classifications Research Article Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of JB Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Zuber, P. Articles by Losick, R. Search for related content PubMed PubMed citation Articles by Zuber, P. Articles by Losick, R. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue December 2011, volume 193, issue 24 Alert me to new issues of JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0021-9193 Online ISSN: 1098-5530 Copyright © 2011 by the American Society for Microbiology. For an alternate route to JB .asm.org, visit: http://intl- JB .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-9"); pageTracker._trackPageview();

Journal

Journal of BacteriologyAmerican Society For Microbiology

Published: May 1, 1987

There are no references for this article.