Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Molecular modelling of the three-dimensional structure and conformational flexibility of bacterial lipopolysaccharide.

Molecular modelling of the three-dimensional structure and conformational flexibility of... Molecular modelling of the three-dimensional structure and conformational flexibility of bacterial lipopolysaccharide. M Kastowsky , T Gutberlet and H Bradaczek Institut für Kristallographie, Freien Universität Berlin, Germany. ABSTRACT Molecular modelling techniques have been applied to calculate the three-dimensional architecture and the conformational flexibility of a complete bacterial S-form lipopolysaccharide (LPS) consisting of a hexaacyl lipid A identical to Escherichia coli lipid A, a complete Salmonella typhimurium core oligosaccharide portion, and four repeating units of the Salmonella serogroup B O-specific chain. X-ray powder diffraction experiments on dried samples of LPS were carried out to obtain information on the dimensions of the various LPS partial structures. Up to the Ra-LPS structure, the calculated model dimensions were in good agreement with experimental data and were 2.4 nm for lipid A, 2.8 nm for Re-LPS, 3.5 nm for Rd-LPS, and 4.4 nm for Ra-LPS. The maximum length of a stretched S-form LPS model bearing four repeating units was evaluated to be 9.6 nm; however, energetically favored LPS conformations showed the O-specific chain bent with respect to the Ra-LPS portion and significantly smaller dimensions (about 5.0 to 5.5 nm). According to the calculations, the Ra-LPS moiety has an approximately cylindrical shape and is conformationally well defined, in contrast to the O-specific chain, which was found to be the most flexible portion within the molecule. CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article J. Bacteriol. July 1992 vol. 174 no. 14 4798-4806 » Abstract PDF Classifications Research Article Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of JB Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Kastowsky, M. Articles by Bradaczek, H. Search for related content PubMed PubMed citation Articles by Kastowsky, M. Articles by Bradaczek, H. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue December 2011, volume 193, issue 24 Alert me to new issues of JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0021-9193 Online ISSN: 1098-5530 Copyright © 2011 by the American Society for Microbiology. For an alternate route to JB .asm.org, visit: http://intl- JB .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-9"); pageTracker._trackPageview(); http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Bacteriology American Society For Microbiology

Molecular modelling of the three-dimensional structure and conformational flexibility of bacterial lipopolysaccharide.

Journal of Bacteriology , Volume 174 (14): 4798 – Jul 1, 1992

Molecular modelling of the three-dimensional structure and conformational flexibility of bacterial lipopolysaccharide.

Journal of Bacteriology , Volume 174 (14): 4798 – Jul 1, 1992

Abstract

Molecular modelling of the three-dimensional structure and conformational flexibility of bacterial lipopolysaccharide. M Kastowsky , T Gutberlet and H Bradaczek Institut für Kristallographie, Freien Universität Berlin, Germany. ABSTRACT Molecular modelling techniques have been applied to calculate the three-dimensional architecture and the conformational flexibility of a complete bacterial S-form lipopolysaccharide (LPS) consisting of a hexaacyl lipid A identical to Escherichia coli lipid A, a complete Salmonella typhimurium core oligosaccharide portion, and four repeating units of the Salmonella serogroup B O-specific chain. X-ray powder diffraction experiments on dried samples of LPS were carried out to obtain information on the dimensions of the various LPS partial structures. Up to the Ra-LPS structure, the calculated model dimensions were in good agreement with experimental data and were 2.4 nm for lipid A, 2.8 nm for Re-LPS, 3.5 nm for Rd-LPS, and 4.4 nm for Ra-LPS. The maximum length of a stretched S-form LPS model bearing four repeating units was evaluated to be 9.6 nm; however, energetically favored LPS conformations showed the O-specific chain bent with respect to the Ra-LPS portion and significantly smaller dimensions (about 5.0 to 5.5 nm). According to the calculations, the Ra-LPS moiety has an approximately cylindrical shape and is conformationally well defined, in contrast to the O-specific chain, which was found to be the most flexible portion within the molecule. CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article J. Bacteriol. July 1992 vol. 174 no. 14 4798-4806 » Abstract PDF Classifications Research Article Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of JB Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Kastowsky, M. Articles by Bradaczek, H. Search for related content PubMed PubMed citation Articles by Kastowsky, M. Articles by Bradaczek, H. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue December 2011, volume 193, issue 24 Alert me to new issues of JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0021-9193 Online ISSN: 1098-5530 Copyright © 2011 by the American Society for Microbiology. For an alternate route to JB .asm.org, visit: http://intl- JB .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-9"); pageTracker._trackPageview();

Loading next page...
 
/lp/american-society-for-microbiology/molecular-modelling-of-the-three-dimensional-structure-and-qt7XDSg0IP

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
American Society For Microbiology
Copyright
Copyright © 1992 by the American society for Microbiology.
ISSN
0021-9193
eISSN
1098-5530
Publisher site
See Article on Publisher Site

Abstract

Molecular modelling of the three-dimensional structure and conformational flexibility of bacterial lipopolysaccharide. M Kastowsky , T Gutberlet and H Bradaczek Institut für Kristallographie, Freien Universität Berlin, Germany. ABSTRACT Molecular modelling techniques have been applied to calculate the three-dimensional architecture and the conformational flexibility of a complete bacterial S-form lipopolysaccharide (LPS) consisting of a hexaacyl lipid A identical to Escherichia coli lipid A, a complete Salmonella typhimurium core oligosaccharide portion, and four repeating units of the Salmonella serogroup B O-specific chain. X-ray powder diffraction experiments on dried samples of LPS were carried out to obtain information on the dimensions of the various LPS partial structures. Up to the Ra-LPS structure, the calculated model dimensions were in good agreement with experimental data and were 2.4 nm for lipid A, 2.8 nm for Re-LPS, 3.5 nm for Rd-LPS, and 4.4 nm for Ra-LPS. The maximum length of a stretched S-form LPS model bearing four repeating units was evaluated to be 9.6 nm; however, energetically favored LPS conformations showed the O-specific chain bent with respect to the Ra-LPS portion and significantly smaller dimensions (about 5.0 to 5.5 nm). According to the calculations, the Ra-LPS moiety has an approximately cylindrical shape and is conformationally well defined, in contrast to the O-specific chain, which was found to be the most flexible portion within the molecule. CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article J. Bacteriol. July 1992 vol. 174 no. 14 4798-4806 » Abstract PDF Classifications Research Article Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of JB Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Kastowsky, M. Articles by Bradaczek, H. Search for related content PubMed PubMed citation Articles by Kastowsky, M. Articles by Bradaczek, H. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue December 2011, volume 193, issue 24 Alert me to new issues of JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0021-9193 Online ISSN: 1098-5530 Copyright © 2011 by the American Society for Microbiology. For an alternate route to JB .asm.org, visit: http://intl- JB .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-9"); pageTracker._trackPageview();

Journal

Journal of BacteriologyAmerican Society For Microbiology

Published: Jul 1, 1992

There are no references for this article.