Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Escherichia coli Fis and DnaA proteins bind specifically to the nrd promoter region and affect expression of an nrd-lac fusion.

Escherichia coli Fis and DnaA proteins bind specifically to the nrd promoter region and affect... Escherichia coli Fis and DnaA proteins bind specifically to the nrd promoter region and affect expression of an nrd-lac fusion. L B Augustin , B A Jacobson and J A Fuchs Department of Biochemistry, University of Minnesota, St. Paul 55108. ABSTRACT The Escherichia coli nrd operon contains the genes encoding the two subunits of ribonucleoside diphosphate reductase. The regulation of the nrd operon has been observed to be very complex. The specific binding of two proteins to the nrd regulatory region and expression of mutant nrd-lac fusions that do not bind these proteins are described. A partially purified protein from an E. coli cell extract was previously shown to bind to the promoter region and to regulate transcription of the nrd operon (C. K. Tuggle and J. A. Fuchs, J. Bacteriol. 172:1711-1718, 1990). We have purified this protein to homogeneity by affinity chromatography and identified it as the E. coli factor for inversion stimulation (Fis). Cu-phenanthroline footprinting experiments showed that Fis binds to a site centered 156 bp upstream of the start of nrd transcription. Mutants with deletion and site-directed mutations that do not bind Fis at this site have two- to threefold-lower expression of an nrd-lac fusion. The previously reported negative regulatory nature of this site (C. K. Tuggle and J. A. Fuchs, J. Bacteriol. 172:1711-1718, 1990) was found to be due to a change in polarity in the vectors used to construct promoter fusions. Two nine-base sequences with homology to the DnaA consensus binding sequence are located immediately upstream of the nrd putative -35 RNA polymerase binding site. Binding of DnaA to these sequences on DNA fragments containing the nrd promoter region was confirmed by in vitro Cu-phenanthroline footprinting. Footprinting experiments on fragments with each as well as both of the mutated 9-mers suggests cooperativity between the two sites in binding DnaA. Assay of in vivo expression from wild-type and DnaA box-mutated nrd promoter fragments fused to lacZ on single-copy plasmids indicates a positive effect of DnaA binding on expression of nrd. CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article J. Bacteriol. January 1994 vol. 176 no. 2 378-387 » Abstract PDF Classifications Research Article Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of JB Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Augustin, L. B. Articles by Fuchs, J. A. Search for related content PubMed PubMed citation Articles by Augustin, L. B. Articles by Fuchs, J. A. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue December 2011, volume 193, issue 24 Alert me to new issues of JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0021-9193 Online ISSN: 1098-5530 Copyright © 2011 by the American Society for Microbiology. For an alternate route to JB .asm.org, visit: http://intl- JB .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-9"); pageTracker._trackPageview(); http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Bacteriology American Society For Microbiology

Escherichia coli Fis and DnaA proteins bind specifically to the nrd promoter region and affect expression of an nrd-lac fusion.

Journal of Bacteriology , Volume 176 (2): 378 – Jan 1, 1994

Escherichia coli Fis and DnaA proteins bind specifically to the nrd promoter region and affect expression of an nrd-lac fusion.

Journal of Bacteriology , Volume 176 (2): 378 – Jan 1, 1994

Abstract

Escherichia coli Fis and DnaA proteins bind specifically to the nrd promoter region and affect expression of an nrd-lac fusion. L B Augustin , B A Jacobson and J A Fuchs Department of Biochemistry, University of Minnesota, St. Paul 55108. ABSTRACT The Escherichia coli nrd operon contains the genes encoding the two subunits of ribonucleoside diphosphate reductase. The regulation of the nrd operon has been observed to be very complex. The specific binding of two proteins to the nrd regulatory region and expression of mutant nrd-lac fusions that do not bind these proteins are described. A partially purified protein from an E. coli cell extract was previously shown to bind to the promoter region and to regulate transcription of the nrd operon (C. K. Tuggle and J. A. Fuchs, J. Bacteriol. 172:1711-1718, 1990). We have purified this protein to homogeneity by affinity chromatography and identified it as the E. coli factor for inversion stimulation (Fis). Cu-phenanthroline footprinting experiments showed that Fis binds to a site centered 156 bp upstream of the start of nrd transcription. Mutants with deletion and site-directed mutations that do not bind Fis at this site have two- to threefold-lower expression of an nrd-lac fusion. The previously reported negative regulatory nature of this site (C. K. Tuggle and J. A. Fuchs, J. Bacteriol. 172:1711-1718, 1990) was found to be due to a change in polarity in the vectors used to construct promoter fusions. Two nine-base sequences with homology to the DnaA consensus binding sequence are located immediately upstream of the nrd putative -35 RNA polymerase binding site. Binding of DnaA to these sequences on DNA fragments containing the nrd promoter region was confirmed by in vitro Cu-phenanthroline footprinting. Footprinting experiments on fragments with each as well as both of the mutated 9-mers suggests cooperativity between the two sites in binding DnaA. Assay of in vivo expression from wild-type and DnaA box-mutated nrd promoter fragments fused to lacZ on single-copy plasmids indicates a positive effect of DnaA binding on expression of nrd. CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article J. Bacteriol. January 1994 vol. 176 no. 2 378-387 » Abstract PDF Classifications Research Article Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of JB Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Augustin, L. B. Articles by Fuchs, J. A. Search for related content PubMed PubMed citation Articles by Augustin, L. B. Articles by Fuchs, J. A. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue December 2011, volume 193, issue 24 Alert me to new issues of JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0021-9193 Online ISSN: 1098-5530 Copyright © 2011 by the American Society for Microbiology. For an alternate route to JB .asm.org, visit: http://intl- JB .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-9"); pageTracker._trackPageview();

Loading next page...
 
/lp/american-society-for-microbiology/escherichia-coli-fis-and-dnaa-proteins-bind-specifically-to-the-nrd-LeGHQvC6i0

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
American Society For Microbiology
Copyright
Copyright © 1994 by the American society for Microbiology.
ISSN
0021-9193
eISSN
1098-5530
Publisher site
See Article on Publisher Site

Abstract

Escherichia coli Fis and DnaA proteins bind specifically to the nrd promoter region and affect expression of an nrd-lac fusion. L B Augustin , B A Jacobson and J A Fuchs Department of Biochemistry, University of Minnesota, St. Paul 55108. ABSTRACT The Escherichia coli nrd operon contains the genes encoding the two subunits of ribonucleoside diphosphate reductase. The regulation of the nrd operon has been observed to be very complex. The specific binding of two proteins to the nrd regulatory region and expression of mutant nrd-lac fusions that do not bind these proteins are described. A partially purified protein from an E. coli cell extract was previously shown to bind to the promoter region and to regulate transcription of the nrd operon (C. K. Tuggle and J. A. Fuchs, J. Bacteriol. 172:1711-1718, 1990). We have purified this protein to homogeneity by affinity chromatography and identified it as the E. coli factor for inversion stimulation (Fis). Cu-phenanthroline footprinting experiments showed that Fis binds to a site centered 156 bp upstream of the start of nrd transcription. Mutants with deletion and site-directed mutations that do not bind Fis at this site have two- to threefold-lower expression of an nrd-lac fusion. The previously reported negative regulatory nature of this site (C. K. Tuggle and J. A. Fuchs, J. Bacteriol. 172:1711-1718, 1990) was found to be due to a change in polarity in the vectors used to construct promoter fusions. Two nine-base sequences with homology to the DnaA consensus binding sequence are located immediately upstream of the nrd putative -35 RNA polymerase binding site. Binding of DnaA to these sequences on DNA fragments containing the nrd promoter region was confirmed by in vitro Cu-phenanthroline footprinting. Footprinting experiments on fragments with each as well as both of the mutated 9-mers suggests cooperativity between the two sites in binding DnaA. Assay of in vivo expression from wild-type and DnaA box-mutated nrd promoter fragments fused to lacZ on single-copy plasmids indicates a positive effect of DnaA binding on expression of nrd. CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article J. Bacteriol. January 1994 vol. 176 no. 2 378-387 » Abstract PDF Classifications Research Article Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of JB Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Augustin, L. B. Articles by Fuchs, J. A. Search for related content PubMed PubMed citation Articles by Augustin, L. B. Articles by Fuchs, J. A. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue December 2011, volume 193, issue 24 Alert me to new issues of JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0021-9193 Online ISSN: 1098-5530 Copyright © 2011 by the American Society for Microbiology. For an alternate route to JB .asm.org, visit: http://intl- JB .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-9"); pageTracker._trackPageview();

Journal

Journal of BacteriologyAmerican Society For Microbiology

Published: Jan 1, 1994

There are no references for this article.