Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Chemical composition and turnover of peptidoglycan in Neisseria gonorrhoeae.

Chemical composition and turnover of peptidoglycan in Neisseria gonorrhoeae. Chemical composition and turnover of peptidoglycan in Neisseria gonorrhoeae. B H Hebeler and F E Young ABSTRACT The peptidoglycan of all four colonial types of a number of strains of Neisseria gonorrhoeae constituted 1 to 2% of the dry weight of the cell. The chemical composition of cell types examined was similar with molar ratios of 1:1:2:1:1 for muramic acid, glucosamine, alanine, glutamic acid, and diaminopimelic acid, respectively. Ninety-six percent of the mass of the peptidoglycan was composed of these compounds. A lipoprotein analogous to that observed in Escherichia coli was not detected. The chain length of the glycan varied from 80 to 110 disaccharide units. The peptide contained equimolar amounts of D- and L-alanine. The rate of turnover of peptidoglycan in strain RD5 was 50% per generation. Turnover proceeded without a lag and followed first-order kinetics. CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article J. Bacteriol. June 1976 vol. 126 no. 3 1180-1185 » Abstract PDF Classifications Research Article Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of JB Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Hebeler, B. H. Articles by Young, F. E. Search for related content PubMed PubMed citation Articles by Hebeler, B. H. Articles by Young, F. E. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue January 2012, volume 194, issue 1 Alert me to new issues of JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0021-9193 Online ISSN: 1098-5530 Copyright © 2011 by the American Society for Microbiology. For an alternate route to JB .asm.org, visit: http://intl- JB .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-9"); pageTracker._trackPageview(); http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Bacteriology American Society For Microbiology

Chemical composition and turnover of peptidoglycan in Neisseria gonorrhoeae.

Journal of Bacteriology , Volume 126 (3): 1180 – Jun 1, 1976

Chemical composition and turnover of peptidoglycan in Neisseria gonorrhoeae.

Journal of Bacteriology , Volume 126 (3): 1180 – Jun 1, 1976

Abstract

Chemical composition and turnover of peptidoglycan in Neisseria gonorrhoeae. B H Hebeler and F E Young ABSTRACT The peptidoglycan of all four colonial types of a number of strains of Neisseria gonorrhoeae constituted 1 to 2% of the dry weight of the cell. The chemical composition of cell types examined was similar with molar ratios of 1:1:2:1:1 for muramic acid, glucosamine, alanine, glutamic acid, and diaminopimelic acid, respectively. Ninety-six percent of the mass of the peptidoglycan was composed of these compounds. A lipoprotein analogous to that observed in Escherichia coli was not detected. The chain length of the glycan varied from 80 to 110 disaccharide units. The peptide contained equimolar amounts of D- and L-alanine. The rate of turnover of peptidoglycan in strain RD5 was 50% per generation. Turnover proceeded without a lag and followed first-order kinetics. CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article J. Bacteriol. June 1976 vol. 126 no. 3 1180-1185 » Abstract PDF Classifications Research Article Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of JB Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Hebeler, B. H. Articles by Young, F. E. Search for related content PubMed PubMed citation Articles by Hebeler, B. H. Articles by Young, F. E. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue January 2012, volume 194, issue 1 Alert me to new issues of JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0021-9193 Online ISSN: 1098-5530 Copyright © 2011 by the American Society for Microbiology. For an alternate route to JB .asm.org, visit: http://intl- JB .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-9"); pageTracker._trackPageview();

Loading next page...
 
/lp/american-society-for-microbiology/chemical-composition-and-turnover-of-peptidoglycan-in-neisseria-fA6BxnuEWH

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
American Society For Microbiology
Copyright
Copyright © 1976 by the American society for Microbiology.
ISSN
0021-9193
eISSN
1098-5530
Publisher site
See Article on Publisher Site

Abstract

Chemical composition and turnover of peptidoglycan in Neisseria gonorrhoeae. B H Hebeler and F E Young ABSTRACT The peptidoglycan of all four colonial types of a number of strains of Neisseria gonorrhoeae constituted 1 to 2% of the dry weight of the cell. The chemical composition of cell types examined was similar with molar ratios of 1:1:2:1:1 for muramic acid, glucosamine, alanine, glutamic acid, and diaminopimelic acid, respectively. Ninety-six percent of the mass of the peptidoglycan was composed of these compounds. A lipoprotein analogous to that observed in Escherichia coli was not detected. The chain length of the glycan varied from 80 to 110 disaccharide units. The peptide contained equimolar amounts of D- and L-alanine. The rate of turnover of peptidoglycan in strain RD5 was 50% per generation. Turnover proceeded without a lag and followed first-order kinetics. CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article J. Bacteriol. June 1976 vol. 126 no. 3 1180-1185 » Abstract PDF Classifications Research Article Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of JB Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Hebeler, B. H. Articles by Young, F. E. Search for related content PubMed PubMed citation Articles by Hebeler, B. H. Articles by Young, F. E. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue January 2012, volume 194, issue 1 Alert me to new issues of JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0021-9193 Online ISSN: 1098-5530 Copyright © 2011 by the American Society for Microbiology. For an alternate route to JB .asm.org, visit: http://intl- JB .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-9"); pageTracker._trackPageview();

Journal

Journal of BacteriologyAmerican Society For Microbiology

Published: Jun 1, 1976

There are no references for this article.