Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A novel glycylcycline, 9-(N,N-dimethylglycylamido)-6-demethyl-6-deoxytetracycline, is neither transported nor recognized by the transposon Tn10-encoded metal-tetracycline/H+ antiporter.

A novel glycylcycline, 9-(N,N-dimethylglycylamido)-6-demethyl-6-deoxytetracycline, is neither... A novel glycylcycline, 9-(N,N-dimethylglycylamido)-6-demethyl-6-deoxytetracycline, is neither transported nor recognized by the transposon Tn10-encoded metal-tetracycline/H+ antiporter. Y Someya , A Yamaguchi , and T Sawai Division of Microbial Chemistry, Faculty of Pharmaceutical Sciences, Chiba University, Japan. ABSTRACT A novel tetracycline derivative, DMG-DMDOT (9-(N,N-dimethylglycylamido)-6-demethyl-6-deoxytetracycline) , is one of the glycylcyclines which have a broad antibacterial spectrum, including many tetracyclineresistant bacteria (R.T. Testa, P.J. Petersen, N.V. Jacobus, P.-E. Sum, V.J. Lee, and F.P. Tally, Antimicrob. Agents Chemother. 37:2270-2277, 1993). The mechanism by which DMG-DMDOT overcomes efflux-based tetracycline resistance was investigated. Tetracycline-resistant Escherichia coli cells carrying an R plasmid encoding the tet(B) gene, which encodes the typical tetracycline efflux pump (TetA(B)) of gram-negative bacteria, were as susceptible to DMG-DMDOT as was the tetracycline-susceptible host. When mid-log-phase cells carrying the tet(B) gene were incubated with a subbactericidal concentration of DMG-DMDOT (0.5 micrograms/ml) for 2 h, a significant amount of the TetA(B) protein was detected in the cell membrane by Western blotting (immunoblotting) with an anti-carboxyl-terminal antibody, similar to the case in which tetracycline was used as the inducer, indicating that the tet repressor, TetR, can recognize DMG-DMDOT as an efficient inducer. Everted membrane vesicles prepared from cells producing the TetA(B) protein showed absolutely no transport activity for DMG-DMDOT. Furthermore, the presence of excess DMG-DMDOT had no effect on the tetracycline transport activity of the everted vesicles, indicating that DMG-DMDOT is not recognized as a substrate by the TetA(B) protein. CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article doi: 10.1128/​AAC.39.1.247 Antimicrob. Agents Chemother. January 1995 vol. 39 no. 1 247-249 » Abstract PDF Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of AAC Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Someya, Y. Articles by Sawai, T. Search for related content PubMed PubMed citation Articles by Someya, Y. Articles by Sawai, T. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue December 2011, volume 55, issue 12 Alert me to new issues of AAC About AAC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AAC RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0066-4804 Online ISSN: 1098-6596 Copyright © 2011 by the American Society for Microbiology. For an alternate route to AAC .asm.org, visit: http://intl- AAC .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-3"); pageTracker._trackPageview(); http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Antimicrobial Agents and Chemotherapy American Society For Microbiology

A novel glycylcycline, 9-(N,N-dimethylglycylamido)-6-demethyl-6-deoxytetracycline, is neither transported nor recognized by the transposon Tn10-encoded metal-tetracycline/H+ antiporter.

Antimicrobial Agents and Chemotherapy , Volume 39 (1): 247 – Jan 1, 1995

A novel glycylcycline, 9-(N,N-dimethylglycylamido)-6-demethyl-6-deoxytetracycline, is neither transported nor recognized by the transposon Tn10-encoded metal-tetracycline/H+ antiporter.

Antimicrobial Agents and Chemotherapy , Volume 39 (1): 247 – Jan 1, 1995

Abstract

A novel glycylcycline, 9-(N,N-dimethylglycylamido)-6-demethyl-6-deoxytetracycline, is neither transported nor recognized by the transposon Tn10-encoded metal-tetracycline/H+ antiporter. Y Someya , A Yamaguchi , and T Sawai Division of Microbial Chemistry, Faculty of Pharmaceutical Sciences, Chiba University, Japan. ABSTRACT A novel tetracycline derivative, DMG-DMDOT (9-(N,N-dimethylglycylamido)-6-demethyl-6-deoxytetracycline) , is one of the glycylcyclines which have a broad antibacterial spectrum, including many tetracyclineresistant bacteria (R.T. Testa, P.J. Petersen, N.V. Jacobus, P.-E. Sum, V.J. Lee, and F.P. Tally, Antimicrob. Agents Chemother. 37:2270-2277, 1993). The mechanism by which DMG-DMDOT overcomes efflux-based tetracycline resistance was investigated. Tetracycline-resistant Escherichia coli cells carrying an R plasmid encoding the tet(B) gene, which encodes the typical tetracycline efflux pump (TetA(B)) of gram-negative bacteria, were as susceptible to DMG-DMDOT as was the tetracycline-susceptible host. When mid-log-phase cells carrying the tet(B) gene were incubated with a subbactericidal concentration of DMG-DMDOT (0.5 micrograms/ml) for 2 h, a significant amount of the TetA(B) protein was detected in the cell membrane by Western blotting (immunoblotting) with an anti-carboxyl-terminal antibody, similar to the case in which tetracycline was used as the inducer, indicating that the tet repressor, TetR, can recognize DMG-DMDOT as an efficient inducer. Everted membrane vesicles prepared from cells producing the TetA(B) protein showed absolutely no transport activity for DMG-DMDOT. Furthermore, the presence of excess DMG-DMDOT had no effect on the tetracycline transport activity of the everted vesicles, indicating that DMG-DMDOT is not recognized as a substrate by the TetA(B) protein. CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article doi: 10.1128/​AAC.39.1.247 Antimicrob. Agents Chemother. January 1995 vol. 39 no. 1 247-249 » Abstract PDF Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of AAC Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Someya, Y. Articles by Sawai, T. Search for related content PubMed PubMed citation Articles by Someya, Y. Articles by Sawai, T. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue December 2011, volume 55, issue 12 Alert me to new issues of AAC About AAC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AAC RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0066-4804 Online ISSN: 1098-6596 Copyright © 2011 by the American Society for Microbiology. For an alternate route to AAC .asm.org, visit: http://intl- AAC .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-3"); pageTracker._trackPageview();

Loading next page...
 
/lp/american-society-for-microbiology/a-novel-glycylcycline-9-n-n-dimethylglycylamido-6-demethyl-6-29nFhfx0cr

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
American Society For Microbiology
Copyright
Copyright © 1995 by the American society for Microbiology.
ISSN
0066-4804
eISSN
1098-6596
DOI
10.1128/AAC.39.1.247
Publisher site
See Article on Publisher Site

Abstract

A novel glycylcycline, 9-(N,N-dimethylglycylamido)-6-demethyl-6-deoxytetracycline, is neither transported nor recognized by the transposon Tn10-encoded metal-tetracycline/H+ antiporter. Y Someya , A Yamaguchi , and T Sawai Division of Microbial Chemistry, Faculty of Pharmaceutical Sciences, Chiba University, Japan. ABSTRACT A novel tetracycline derivative, DMG-DMDOT (9-(N,N-dimethylglycylamido)-6-demethyl-6-deoxytetracycline) , is one of the glycylcyclines which have a broad antibacterial spectrum, including many tetracyclineresistant bacteria (R.T. Testa, P.J. Petersen, N.V. Jacobus, P.-E. Sum, V.J. Lee, and F.P. Tally, Antimicrob. Agents Chemother. 37:2270-2277, 1993). The mechanism by which DMG-DMDOT overcomes efflux-based tetracycline resistance was investigated. Tetracycline-resistant Escherichia coli cells carrying an R plasmid encoding the tet(B) gene, which encodes the typical tetracycline efflux pump (TetA(B)) of gram-negative bacteria, were as susceptible to DMG-DMDOT as was the tetracycline-susceptible host. When mid-log-phase cells carrying the tet(B) gene were incubated with a subbactericidal concentration of DMG-DMDOT (0.5 micrograms/ml) for 2 h, a significant amount of the TetA(B) protein was detected in the cell membrane by Western blotting (immunoblotting) with an anti-carboxyl-terminal antibody, similar to the case in which tetracycline was used as the inducer, indicating that the tet repressor, TetR, can recognize DMG-DMDOT as an efficient inducer. Everted membrane vesicles prepared from cells producing the TetA(B) protein showed absolutely no transport activity for DMG-DMDOT. Furthermore, the presence of excess DMG-DMDOT had no effect on the tetracycline transport activity of the everted vesicles, indicating that DMG-DMDOT is not recognized as a substrate by the TetA(B) protein. CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article doi: 10.1128/​AAC.39.1.247 Antimicrob. Agents Chemother. January 1995 vol. 39 no. 1 247-249 » Abstract PDF Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of AAC Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Someya, Y. Articles by Sawai, T. Search for related content PubMed PubMed citation Articles by Someya, Y. Articles by Sawai, T. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue December 2011, volume 55, issue 12 Alert me to new issues of AAC About AAC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AAC RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0066-4804 Online ISSN: 1098-6596 Copyright © 2011 by the American Society for Microbiology. For an alternate route to AAC .asm.org, visit: http://intl- AAC .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-3"); pageTracker._trackPageview();

Journal

Antimicrobial Agents and ChemotherapyAmerican Society For Microbiology

Published: Jan 1, 1995

There are no references for this article.