Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

SUMOylation Attenuates Sensitivity toward Hypoxia- or Desferroxamine-Induced Injury by Modulating Adaptive Responses in Salivary Epithelial Cells

SUMOylation Attenuates Sensitivity toward Hypoxia- or Desferroxamine-Induced Injury by Modulating... Hypoxic stress activates various signal transduction pathways including posttranslational modification with the ubiquitin-like SUMO protein (SUMOylation). However, the molecular mechanisms by which SUMOylation regulates hypoxic responses remain unclear. Here, we investigated the ability of rat salivary Pa-4 epithelial cells to resist cell injury elicited by 1% O 2 - or hypoxia-mimetic desferroxamine (DFO)-stimulated SUMOylation processes. By using Pa-4 cells stably transduced with lenti-SUMO-1 and a cell-permeant peptide harboring SUMO-binding motif to interfere with SUMO-dependent protein-protein interactions, we demonstrate that SUMOylation augments cell survival against DFO treatment. This appeared to be partly mediated through attenuation of Protein Kinase C (PKC)- activation and caspase-3 cleavage, hallmarks of pro-apoptotic signaling. Intriguingly, DFO-induced phosphorylation of DNA damage marker ataxia-telangiectasia-mutated protein S1981 preceded activation of PKC and caspase-3. Constitutive SUMOylation facilitated 1% O 2 - or DFO-induced nuclear factor B transactivation, possibly via activation of genotoxic signaling cascade. In addition, we observed transient preservation of transepithelial electrical resistance during the early stage of hypoxia (1% O 2 ) as well as enhanced transepithelial electrical resistance recovery after prolonged hypoxia in SUMO-1-expressing cell monolayers. In conclusion, our results unveil a previously unrecognized mechanism by which SUMOylation and activation of ataxia-telangiectasia-mutated protein, PKC , caspase-3, and nuclear factor B signaling pathways modulate salivary adaptive responses to stress in cells exposed to either 1% O 2 or DFO. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png American Journal of Pathology American Society for Investigative Pathology

SUMOylation Attenuates Sensitivity toward Hypoxia- or Desferroxamine-Induced Injury by Modulating Adaptive Responses in Salivary Epithelial Cells

SUMOylation Attenuates Sensitivity toward Hypoxia- or Desferroxamine-Induced Injury by Modulating Adaptive Responses in Salivary Epithelial Cells

American Journal of Pathology , Volume 168 (5): 1452 – May 1, 2006

Abstract

Hypoxic stress activates various signal transduction pathways including posttranslational modification with the ubiquitin-like SUMO protein (SUMOylation). However, the molecular mechanisms by which SUMOylation regulates hypoxic responses remain unclear. Here, we investigated the ability of rat salivary Pa-4 epithelial cells to resist cell injury elicited by 1% O 2 - or hypoxia-mimetic desferroxamine (DFO)-stimulated SUMOylation processes. By using Pa-4 cells stably transduced with lenti-SUMO-1 and a cell-permeant peptide harboring SUMO-binding motif to interfere with SUMO-dependent protein-protein interactions, we demonstrate that SUMOylation augments cell survival against DFO treatment. This appeared to be partly mediated through attenuation of Protein Kinase C (PKC)- activation and caspase-3 cleavage, hallmarks of pro-apoptotic signaling. Intriguingly, DFO-induced phosphorylation of DNA damage marker ataxia-telangiectasia-mutated protein S1981 preceded activation of PKC and caspase-3. Constitutive SUMOylation facilitated 1% O 2 - or DFO-induced nuclear factor B transactivation, possibly via activation of genotoxic signaling cascade. In addition, we observed transient preservation of transepithelial electrical resistance during the early stage of hypoxia (1% O 2 ) as well as enhanced transepithelial electrical resistance recovery after prolonged hypoxia in SUMO-1-expressing cell monolayers. In conclusion, our results unveil a previously unrecognized mechanism by which SUMOylation and activation of ataxia-telangiectasia-mutated protein, PKC , caspase-3, and nuclear factor B signaling pathways modulate salivary adaptive responses to stress in cells exposed to either 1% O 2 or DFO.

Loading next page...
 
/lp/american-society-for-investigative-pathology/sumoylation-attenuates-sensitivity-toward-hypoxia-or-desferroxamine-WKS6ICre2F

References (53)

Publisher
American Society for Investigative Pathology
Copyright
Copyright © 2006 by the American Society for Investigative Pathology.
ISSN
0002-9440
eISSN
1525-2191
DOI
10.2353/ajpath.2006.050782
pmid
16651613
Publisher site
See Article on Publisher Site

Abstract

Hypoxic stress activates various signal transduction pathways including posttranslational modification with the ubiquitin-like SUMO protein (SUMOylation). However, the molecular mechanisms by which SUMOylation regulates hypoxic responses remain unclear. Here, we investigated the ability of rat salivary Pa-4 epithelial cells to resist cell injury elicited by 1% O 2 - or hypoxia-mimetic desferroxamine (DFO)-stimulated SUMOylation processes. By using Pa-4 cells stably transduced with lenti-SUMO-1 and a cell-permeant peptide harboring SUMO-binding motif to interfere with SUMO-dependent protein-protein interactions, we demonstrate that SUMOylation augments cell survival against DFO treatment. This appeared to be partly mediated through attenuation of Protein Kinase C (PKC)- activation and caspase-3 cleavage, hallmarks of pro-apoptotic signaling. Intriguingly, DFO-induced phosphorylation of DNA damage marker ataxia-telangiectasia-mutated protein S1981 preceded activation of PKC and caspase-3. Constitutive SUMOylation facilitated 1% O 2 - or DFO-induced nuclear factor B transactivation, possibly via activation of genotoxic signaling cascade. In addition, we observed transient preservation of transepithelial electrical resistance during the early stage of hypoxia (1% O 2 ) as well as enhanced transepithelial electrical resistance recovery after prolonged hypoxia in SUMO-1-expressing cell monolayers. In conclusion, our results unveil a previously unrecognized mechanism by which SUMOylation and activation of ataxia-telangiectasia-mutated protein, PKC , caspase-3, and nuclear factor B signaling pathways modulate salivary adaptive responses to stress in cells exposed to either 1% O 2 or DFO.

Journal

American Journal of PathologyAmerican Society for Investigative Pathology

Published: May 1, 2006

There are no references for this article.