Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Response of Upper Clouds in Global Warming Experiments Obtained Using a Global Nonhydrostatic Model with Explicit Cloud Processes

Response of Upper Clouds in Global Warming Experiments Obtained Using a Global Nonhydrostatic... Using a global nonhydrostatic model with explicit cloud processes, upper-cloud changes are investigated by comparing the present climate condition under the perpetual July setting and the global warming condition, in which the sea surface temperature (SST) is raised by 2°. The sensitivity of the upper-cloud cover and the ice water path (IWP) are investigated through a set of experiments. The responses of convective mass flux and convective areas are also examined, together with those of the large-scale subsidence and relative humidity in the subtropics. The responses of the IWP and the upper-cloud cover are found to be opposite; that is, as the SST increases, the IWP averaged over the tropics decreases, whereas the upper-cloud cover in the tropics increases. To clarify the IWP response, a simple conceptual model is constructed. The model consists of three columns of deep convective core, anvil, and environmental subsidence regions. The vertical profiles of hydrometers are predicted with cloud microphysics processes and kinematically prescribed circulation. The reduction in convective mass flux is found to be a primary factor in the decrease of the IWP under the global warming condition. Even when a different and more comprehensive cloud microphysics scheme is used, the reduction in the IWP due to the mass flux change is also confirmed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Response of Upper Clouds in Global Warming Experiments Obtained Using a Global Nonhydrostatic Model with Explicit Cloud Processes

Loading next page...
 
/lp/american-meteorological-society/response-of-upper-clouds-in-global-warming-experiments-obtained-using-jOt230oTrS

References (54)

Publisher
American Meteorological Society
Copyright
Copyright © 2011 American Meteorological Society
ISSN
0894-8755
eISSN
1520-0442
DOI
10.1175/JCLI-D-11-00152.1
Publisher site
See Article on Publisher Site

Abstract

Using a global nonhydrostatic model with explicit cloud processes, upper-cloud changes are investigated by comparing the present climate condition under the perpetual July setting and the global warming condition, in which the sea surface temperature (SST) is raised by 2°. The sensitivity of the upper-cloud cover and the ice water path (IWP) are investigated through a set of experiments. The responses of convective mass flux and convective areas are also examined, together with those of the large-scale subsidence and relative humidity in the subtropics. The responses of the IWP and the upper-cloud cover are found to be opposite; that is, as the SST increases, the IWP averaged over the tropics decreases, whereas the upper-cloud cover in the tropics increases. To clarify the IWP response, a simple conceptual model is constructed. The model consists of three columns of deep convective core, anvil, and environmental subsidence regions. The vertical profiles of hydrometers are predicted with cloud microphysics processes and kinematically prescribed circulation. The reduction in convective mass flux is found to be a primary factor in the decrease of the IWP under the global warming condition. Even when a different and more comprehensive cloud microphysics scheme is used, the reduction in the IWP due to the mass flux change is also confirmed.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Mar 15, 2011

There are no references for this article.