Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Buoyancy of Convective Vertical Motions in the Inner Core of Intense Hurricanes. Part I: General Statistics

Buoyancy of Convective Vertical Motions in the Inner Core of Intense Hurricanes. Part I: General... The buoyancy of hurricane convective vertical motions is studied using aircraft data from 175 radial legs collected in 14 intense hurricanes at four altitudes ranging from 1.5 to 5.5 km. The data of each leg are initially filtered to separate convective-scale features from background mesoscale structure. Convective vertical motion events, called cores, are identified using the criteria that the convective-scale vertical velocity must exceed 1.0 m s −1 for at least 0.5 km. A total of 620 updraft cores and 570 downdraft cores are included in the dataset. Total buoyancy is calculated from convective-scale virtual potential temperature, pressure, and liquid water content using the mesoscale structure as the reference state. Core properties are summarized for the eyewall and rainband regions at each altitude. Characteristics of core average convective vertical velocity, maximum convective vertical velocity, and diameter are consistent with previous studies of hurricane convection. Most cores are superimposed upon relatively weak mesoscale ascent. The mean eyewall (rainband) updraft core exhibits small, but statistically significant, positive total buoyancy below 4 km (between 2 and 5 km) and a modest increase in vertical velocity with altitude. The mean downdraft core not superimposed upon stronger mesoscale ascent also exhibits positive total buoyancy and a slight decrease in downward vertical velocity with decreasing altitude. Buoyant updraft cores cover less than 5% of the total area in each region but accomplish ∼40% of the total upward transport. A one-dimensional updraft model is used to elucidate the relative roles played by buoyancy, vertical perturbation pressure gradient forces, water loading, and entrainment in the vertical acceleration of ordinary updraft cores. Small positive total buoyancy values are found to be more than adequate to explain the vertical accelerations observed in updraft core strength, which implies that ordinary vertical perturbation pressure gradient forces are directed downward, opposing the positive buoyancy forces. Entrainment and water loading are also found to limit updraft magnitudes. The observations support some aspects of both the hot tower hypothesis and symmetric moist neutral ascent, but neither concept appears dominant. Buoyant convective updrafts, however, are integral components of the hurricane’s transverse circulation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

Buoyancy of Convective Vertical Motions in the Inner Core of Intense Hurricanes. Part I: General Statistics

Loading next page...
 
/lp/american-meteorological-society/buoyancy-of-convective-vertical-motions-in-the-inner-core-of-intense-jYJkxK4EtH

References (64)

Publisher
American Meteorological Society
Copyright
Copyright © 2003 American Meteorological Society
ISSN
1520-0493
DOI
10.1175/MWR-2848.1
Publisher site
See Article on Publisher Site

Abstract

The buoyancy of hurricane convective vertical motions is studied using aircraft data from 175 radial legs collected in 14 intense hurricanes at four altitudes ranging from 1.5 to 5.5 km. The data of each leg are initially filtered to separate convective-scale features from background mesoscale structure. Convective vertical motion events, called cores, are identified using the criteria that the convective-scale vertical velocity must exceed 1.0 m s −1 for at least 0.5 km. A total of 620 updraft cores and 570 downdraft cores are included in the dataset. Total buoyancy is calculated from convective-scale virtual potential temperature, pressure, and liquid water content using the mesoscale structure as the reference state. Core properties are summarized for the eyewall and rainband regions at each altitude. Characteristics of core average convective vertical velocity, maximum convective vertical velocity, and diameter are consistent with previous studies of hurricane convection. Most cores are superimposed upon relatively weak mesoscale ascent. The mean eyewall (rainband) updraft core exhibits small, but statistically significant, positive total buoyancy below 4 km (between 2 and 5 km) and a modest increase in vertical velocity with altitude. The mean downdraft core not superimposed upon stronger mesoscale ascent also exhibits positive total buoyancy and a slight decrease in downward vertical velocity with decreasing altitude. Buoyant updraft cores cover less than 5% of the total area in each region but accomplish ∼40% of the total upward transport. A one-dimensional updraft model is used to elucidate the relative roles played by buoyancy, vertical perturbation pressure gradient forces, water loading, and entrainment in the vertical acceleration of ordinary updraft cores. Small positive total buoyancy values are found to be more than adequate to explain the vertical accelerations observed in updraft core strength, which implies that ordinary vertical perturbation pressure gradient forces are directed downward, opposing the positive buoyancy forces. Entrainment and water loading are also found to limit updraft magnitudes. The observations support some aspects of both the hot tower hypothesis and symmetric moist neutral ascent, but neither concept appears dominant. Buoyant convective updrafts, however, are integral components of the hurricane’s transverse circulation.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: Dec 19, 2003

There are no references for this article.