Instant Access to the Journals You Need

for just $40 per month.

Start Your Free Trial

A Novel DNMT3B Splice Variant Expressed in Tumor and Pluripotent Cells Modulates Genomic DNA Methylation Patterns and Displays Altered DNA Binding

A Novel DNMT3B Splice Variant Expressed in Tumor and Pluripotent Cells Modulates Genomic DNA Methylation Patterns and Displays Altered DNA Binding

Abstract

DNA methylation is an epigenetic mark essential for mammalian development, genomic stability, and imprinting. DNA methylation patterns are established and maintained by three DNA methyltransferases: DNMT1, DNMT3A, and DNMT3B. Interestingly, all three DNMTs make use of alternative splicing. DNMT3B has nearly 40 known splice variants expressed in a tissue- and disease-specific manner, but very little is known about the role of these splice variants in modulating DNMT3B function. We describe here the identification and characterization of a novel alternatively spliced form of DNMT3B lacking exon 5 within the NH 2 -terminal regulatory domain. This variant, which we term DNMT3B3Δ5 because it is closely related in structure to the ubiquitously expressed DNMT3B3 isoform, is highly expressed in pluripotent cells and brain tissue, is downregulated during differentiation, and is conserved in the mouse. Creation of pluripotent iPS cells from fibroblasts results in marked induction of DNMT3B3Δ5. DNMT3B3Δ5 expression is also altered in human disease, with tumor cell lines displaying elevated or reduced expression depending on their tissue of origin. We then compared the DNA binding and subcellular localization of DNMT3B3Δ5 versus DNMT3B3, revealing that DNMT3B3Δ5 possessed significantly enhanced DNA binding affinity and displayed an altered nuclear distribution. Finally, ectopic overexpression of DNMT3B3Δ5 resulted in repetitive element hypomethylation and enhanced cell growth in a colony formation assay. Taken together, these results show that DNMT3B3Δ5 may play an important role in stem cell maintenance or differentiation and suggest that sequences encoded by exon 5 influence the functional properties of DNMT3B. (Mol Cancer Res 2009;7(10):1622–34) alternative splicing DNA methylation DNMT3B
Loading next page...
 
/lp/american-association-of-cancer-research/a-novel-dnmt3b-splice-variant-expressed-in-tumor-and-pluripotent-cells-GLv0K2la4H

You're reading a free preview. Subscribe to read the entire article.

And millions more from thousands of peer-reviewed journals, for only $40/month.

Start Your Free Trial

What content is in DeepDyve?

  • Read and share from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.

Rent Scholarly Articles?

  • Read the full article in your browser.
  • Access all of your rentals from the cloud anywhere you have an internet connection.
  • Beautiful reading experience – Full charts and figures, just like the PDF.
  • Read as much as you'd like - whenever you'd like.

Happy Users

“In one word renting from DeepDyve is FANTASTIC!!! ... 99% of the time I only need access to an article for a month or so, so renting the articles is perfect for me.”

Adam S.

“Thanks for a great service! For an unaffiliated science blogger like myself this is like a dream come true.”

Seppo P.

“Hi guys, I cannot tell you how much I love this resource. Incredible. I really believe you've hit the nail on the head with this site in regards to solving the research-purchase issue.”

Daniel C.

“Let me seize this opportunity and congratulate you on the service you are rendering to the scientific community.”

Joao B.